
Formal RT solvers

� Long characteristics (Feautrier scheme)
Cannon C.J. 1970, Astrophys. J., v.161, p.255

� Short characteristics (Attenuation operator)
Bruls et al. 1999, Astron. and Astroph., v.348, p.233

� Short characteristics (Hermitian scheme)
Bellot Rubio et al. 1998, Astrophys. J., v.506, p.805

http://www.astro.uu.se/~piskunov/TEACHING/NUM_RT/cannon.pdf
http://www.astro.uu.se/~piskunov/TEACHING/NUM_RT/2300233.pdf
http://www.astro.uu.se/~piskunov/TEACHING/NUM_RT/37486.pdf


Why formal solver?
� Once we found the source function we 

need find the intensities in order to 
compute the energy transport

� The intensities are needed to compute
self-consistent level populations �
opacities � optical depth scale

� To get a consistent solution we may 
need to iterate



Requirements for a formal 
solver

� The solver for intensities must be very 
quick and stable. It should be able to 
achieve good accuracy in the prescribed 
grid on which the source function is known

� The method should not propagate/amplify 
errors which may occur in early iterations

� The last two requirements make impossible 
to use RK in NLTE and significant 
scattering



Method classification

� RT solvers act along rays or characteristics that 
do not necessarily coincide with the selected grid.

� Individual ray can be followed through the whole 
medium boundary-to-boundary or over a short 
part extending the length of one grid cell.

� RT solvers based on complete rays are known as 
long characteristics methods.

� RT solvers that follow radiation through a single 
cell at a time are called short characteristics
methods.

� In 1D there is obviously no difference between 
short and long characteristic methods



Method classification
Long characteristics Short characteristics



� Equation of radiative transfer (again) 

where x is a geometrical distance along the ray
� Let’s split the intensity in two flows: I+ in the 

direction of increasing x and I - in the opposite 
direction. The RT equation can be written for 
each direction:
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We define two new variables U=�(I++ I -)
and V=�(I+- I -). Now we can add/subtract 
the two equations of RT and divide the 
results by 2: 
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– We substitute the derivative of V in the 2nd

equation using the expression for V from the 1st

equation:

– The equations for U and V can be combined to 
a single 2nd order ODE:
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Boundary conditions are set in the two ends of 
the medium. For the smallest x we can write:

For the opposite end we have:
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Finite differences equation have familiar form
(note the sign change):
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For i=1 we can write linear boundary condition:
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… or we can write quadratic boundary condition:

The case of i=N is similar
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For semi-infinite medium boundary
condition at � looks a bit different:
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� Solution of RT over one grid cell can be written: 

where � is the optical path along the ray
� Suppose S slowly changes with � which can be 

approximated by a linear function. Then we can 
take the integral analytically!
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How this works? 
� Select direction
� For starting grid points incoming intensity 

is given by boundary conditions
� To compute the opacity and the source 

function in the starting and the following 
points we may need to interpolate. These 
are needed to compute the intensity in the 
next point

� One can take 3 points and make parabolic 
fit to the source function



Hermitian method
Taylor expansion for intensity in point �i:
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Comparison of the solvers



Home work

Compute spectral synthesis using a method 
of your choice for a static 1D model 
atmosphere of the Sun. For a fixed 
geometrical depth grid and wavelength grid 
you are give a 2D array of opacities and 2D 
array of source function. The boundary 
conditions: no radiation enters through the 
surface and the flux spectrum at the deepest 
point is given.


