
Radiative Transfer
Skript zu Vorlesung S3137 Strahlungstransport,

Universität Bern, Sommersemester 2005,

Christian Mätzler

Institut für Angewandte Physik,
Sidlerstrasse 5, 3012 Bern

Schweiz

Email: matzler@iap.unibe.ch
http://www.iapmw.unibe.ch/

These lecture notes on radiative transfer, starting with an overview on scattering and
absorption of electromagnetic waves, are based on lectures given at the Institute of
Applied Physics, University of Bern in 2000 and 2005.  Accompanying are computer
programs in the numeric computation and visualisation software MATLAB. The codes
and the manuscript are available from the internet address given above.





1

Contents

Part 1:
Scattering and Absorption of Electromagnetic Waves

(Chapters 1 to 6)
Part 2:

Radiative Transfer (Chapters 7 to 13)

Historical Overview...................................................................................................................3

1 Introduction to Scattering and Absorption .............................................................................7
1.1 Electromagnetic waves in matter....................................................................................7
1.2 Effective medium and mixing formulas ...........................................................................8

2 Scattering and Absorption by Single Particles ....................................................................13
2.1 Cross sections and scattering amplitude ......................................................................13
2.2 Forward-Scattering Theorem........................................................................................15
2.3 Efficiencies....................................................................................................................15
2.4 Scattering Matrix...........................................................................................................15
2.5 Polarisation ...................................................................................................................17

3. Approximate Scattering and Absorption Models ................................................................18
3.1 Rayleigh scattering and absorption by spheres............................................................18
3.2 Rayleigh scattering and absorption by ellipsoids..........................................................20
3.3 Born Approximation ......................................................................................................21
3.4 Geometrical Optics .......................................................................................................25

4 Lorenz-Mie Scattering and Absorption by Spheres.............................................................31
4.1 The scattered field ........................................................................................................31
4.2 Mie Coefficients ............................................................................................................31
4.3 Mie Efficiencies.............................................................................................................34
4.4 The internal field ...........................................................................................................34
4.5 Computation of Qa, based on the internal fields ...........................................................35
4.6 Examples and tests ......................................................................................................37
4.7 Extinction Paradox........................................................................................................40
4.8 Lorenz-Mie scattering without diffraction ......................................................................41
4.9 Comparison of Mie results with approximations ...........................................................46

5 On Scattering and Absorption by Non-Spherical Particles..................................................51

6 Scattering and Absorption by a Cloud of Particles ..............................................................52
6.1 The particle cloud .........................................................................................................52
6.2 Size distributions...........................................................................................................52
6.3 Scattering and absorption by clouds.............................................................................53

7 Introduction to Radiative Transfer .......................................................................................54
7.1 Radiance and related quantities ...................................................................................54
7.2 Radiation in thermal equilibrium ...................................................................................56
7.3 Radiation in Local Thermodynamic Equilibrium: Kirchhoff's Law .................................57

8 The Radiative Transfer Equation.........................................................................................59
8.1 Radiative transfer without absorption and scattering....................................................59
8.2 Absorbing medium........................................................................................................60
8.3 Including absorption, emission and scattering..............................................................61
8.4 Formal solution: integral form of the RTE .....................................................................62
8.5 The Flux Equation.........................................................................................................63
8.6 Plane-parallel medium..................................................................................................64



2

9 Solutions Without Scattering ...............................................................................................65
9.1 Note on spectroscopy ...................................................................................................65
9.2 Layers at constant temperature ....................................................................................65
9.3 Effective mean temperature..........................................................................................66
9.4 Linear temperature profile in an exponentially decreasing atmosphere .......................66

10 Standard Problems for Scattering .....................................................................................73
10.1 Scattering at a half-space...........................................................................................73
10.2 Scattering in and transmission through a layer...........................................................75
10.3 Distinction between direct and scattered radiation .....................................................76
10.4 Axial symmetry ...........................................................................................................76

11 Single Scattering ...............................................................................................................78
11.1 The radiative transfer equation and its solution ..........................................................78
11.2 Scattering and transmission functions ........................................................................79
11.3 Reflectivity and transmissivity.....................................................................................79
11.4 Successive orders of scattering..................................................................................83

12 Exact Multiple Scattering...................................................................................................84
12.1 Exact solution of Standard Problem 1 for isotropic scattering ....................................84
12.2 Exact solution of Standard Problem 2 for isotropic scattering ....................................87
12.3 Discussion ..................................................................................................................89
12.4 Appendix: Derivation of Equation (12.2) .....................................................................89

13 Approximate Solutions for Multiple Scattering...................................................................91
13.1 A simple snowpack/cloud reflectance and transmittance model from microwaves to
ultraviolet: The ice-lamella pack .........................................................................................91
13.2 Comparison of lamella pack with spherical scatterers................................................99

Literature ..............................................................................................................................100



3

Historical Overview
Radiative transfer is a valuable tool for astronomy and astrophysics, for remote sensing
of the earth surface atmosphere and ocean, but also for the assessment of the light and
heat transport in the natural (climatology, hydrology, meteorology), human (e.g. architecture,
medicine) and technical environment. When looking at the history we realise that radiometry
and radiative transfer are rooted in the oldest human disciplines. Radiative transfer describes
the emission, propagation, scattering and absorption of radiation. Since almost
everything that we know about the universe has been brought to men by radiation, radiative
transfer is as old as vision.
The basis of today's knowledge on emission and absorption of thermal (or quasi-thermal),
electromagnetic radiation was laid by Josef von Fraunhofer (1787-1826), Robert Bunsen
(1811-1899), Gustav Robert Kirchhoff (1824-1887), and others at and before the time when
James Clark Maxwell (1831-1879) stated that magnetism, electricity, and light are different
manifestations of the same fundamental laws. Application of the first and second laws of
thermodynamics let Kirchhoff formulate his law of radiation in 1860, stating in today's
language, that under local thermodynamic equilibrium the emissivity of a given object is
equal to its absorptivity.
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Even before the Planck function was found in 1900 (Max Planck, 1858-1947), radiative
transfer and spectroscopy enabled the identification of atoms in the solar atmosphere.
Experimental rules of Bunsen revealed properties of low and high optical thickness:

Rule 1 : A hot and opaque solid, liquid or highly compressed gas emits a continuous spectrum.
Rule 2 : A hot, transparent gas produces an emission spectrum with bright lines. The number and colours of

these lines depend on which elements are present in the gas, constituting signatures of these elements.
Rule 3 : If a continuous spectrum passes through a transparent gas at a lower temperature, the gas generates

dark absorption lines, whose number and colours depend on the elements in the gas.

What was missing at that time was the understanding of the spectral line positions, strengths
and widths. The driving questions led to the fast and successful development of quantum
theory in the early 20th Century.

The term, light rays, originated from the observation that light propagates radially from the
source along straight lines. This applies to homogeneous media. More complex is the
situation if the medium is inhomogeneous (or heterogeneous). Then radiation suffers
refraction, reflection, diffraction and scattering; the phenomena were already
investigated by Willebrord Snell (1591-1626) and Augustin Fresnel (1788-1827). The
Fresnel equations, describing the reflection of polarised radiation at a plane, are a basic law
to describe surface emissivity in a simple situation. Scattering by reflecting spheres was
described by Alfred Clebsch in 1863. Light scattering by refractive spheres was described by
Ludvig V. Lorenz in 1890. Better known is the work on the same topic carried out by Gustav
Mie (1867-1957) in 1908. Microwave radiometer observations of precipitating clouds can be
explained by Lorenz-Mie scattering and absorption. Scattering of radiation by particles, which
are small with respect to the wavelength, is named after Baron Rayleigh, John William Strutt
(1842-1919). Rayleigh scattering of radar waves by raindrops has become a standard in
radar meteorology to relate rain rate with radar intensity. Rayleigh scattering has also been
used in microwave radiometry to describe the emission of clouds and snow.
Multiple scattering of radiation in a cloudy atmosphere was first described by Sir Arthur
Schuster (1851-1934) in 1905. Technical applications in the paper and paint industry
followed (Kubelka and Munk, 1931). However it was mainly in the field of astrophysics that
radiative transfer methods made substantial progress. Two important contributors were
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Subrahmanyan Chandrasekhar (1910-1995) and Hendrik Christoffel van de Hulst (1918-
2000), both working for some time at the Yerkes Observatory of the University of Chicago.
They developed mathematical methods in the 1940's to describe radiative transfer in stellar
and planetary atmospheres under the assumption that the refractive index of the medium is
equal to one. Although not necessary, this assumption was used in the majority of works on
this topic. Chandrasekhar's collected papers on radiative transfer were published in book
form in 1950, and van de Hulst's work led to a book dealing with scattering by small particles
in 1957 and a second one on multiple scattering in 1980. Approximate solutions of the
radiative transfer equation for multiple scattering are named after Sir Arthur Eddington
(1884-1944), see Joseph et al. (1976), Meador and Weaver (1980) and Thomas and
Stamnes (1999).
More general treatments were required when it was realised that strong refractive effects
occur for radiation in conductive media, especially at frequencies near the plasma frequency.
A formulation of radiative transfer, including the inhomogeneity and anisotropy of the
propagating medium, was presented by George Bekefi (1925-1995) in 1960 in his textbook
on radiation processes in plasmas, introducing the ray-refractive index. Refractive treatments
were also applied to radiative transfer in natural waters (Mobley, 1994). They appeared to be
so relevant that they were formulated in the fundamental theorem of radiometry (Wyatt,
1978). The theorem was already formulated by David Hilbert (1862-1943) in 1912, and even
Kirchhoff was aware of it because it follows from Snell's law.
Invisible radiation at infrared wavelengths was known at the time of Kirchhoff. This radiation
was called dark rays. Microwaves at still longer wavelengths have been known since the
validation of Maxwell's electromagnetic wave theory by Heinrich Hertz (1857-1894) in 1888.
The pioneer in the development of microwave radiometry was Robert Henry Dicke (1916-
1997), a brilliant physicist in theoretical and in experimental work. The radiometer type
named after him was a great invention in 1944 to measure the low power levels associated
with thermal microwave radiation (Dicke, 1946). A first radiometer operated at the MIT in
Massachusetts at a wavelength of 1.25 cm; this is close to the 22 GHz water-vapour line.
From theoretical work by John H. Van Vleck (1899-1980) in 1942, Dicke realised that the
enhanced radiation was due to emission by water vapour. He and others went to Florida
with three radiometers (at wavelengths of 1.0, 1.25 and 1.5 cm) to measure the rather weak
atmospheric absorption in this frequency range for the first time (Dicke et al. 1946). In this
work they introduced the concepts of antenna temperature TA, of the mean atmospheric
temperature Tm relevant for the observed radiation, and the tipping-curve method. Dicke
also measured the surface temperature of the moon and of the sun. Later he played a key
role in the discovery of the cosmic background radiation.
Before microwave radiometry was exploited for the investigation of the earth, emphasis was
put on extra-terrestrial objects, leading to the evolution of radio astronomy (Kraus, 1966).
But even radio astronomers had to deal with the terrestrial atmosphere to identify the nature
of their signals. Therefore they paved the way in spectroscopy and radiative transfer.
Special interest in terrestrial applications of microwaves was based on the capability to
penetrate clouds and smoke. Shortly before, during and after World War II, the priority in
the advancements of microwave methods was given to radar. This active technique is
excellent for locating and ranging remote objects, but it is limited in radiometric accuracy. In
contrast to radars, radiometers are passive devices, meaning that they receive radiation,
only. Their virtue is high radiometric accuracy, but the ranging capability of radiometers is
either inexistent or indirect, for instance by using stereo techniques or knowledge on spectral
properties of the medium to be sensed. It is evident that the properties of radars and
radiometers are complementary.
The interaction of electromagnetic waves with matter is mainly described by the dielectric,
magnetic and geometric properties. A classic textbook on this topic is "Dielectrics and
Waves" by von Hippel (1954) who introduced and compared different approaches from
microscopic and macroscopic views, from the physics and electrical engineering
standpoints, using historical, theoretical and experimental aspects. Of special importance are
the dielectric properties of water and of aqueous solutions with the concept of relaxation
phenomena. A leading scientist was Peter Debye (1884–1966) who wrote a treatise on
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polar molecules (Debye, 1929). He received the Nobel Prize in 1936 for achievements in
molecular studies.
Another topic is the description of heterogeneous media in terms of an effective dielectric
constant and of other effective-medium properties (Sihvola, 1999). The topic is important
because many natural media are inherently heterogeneous, but, for sufficiently fine structure,
may be treated as if they were homogeneous.
Spectroscopy and the understanding of spectral lines evolved from quantum theory (see
e.g. Microwave Spectroscopy of molecular gases by Townes and Schawlow, 1955).
A treatise on microwave remote sensing, including important aspects of radiative transfer
was written by Ulaby, Moore and Fung (1982, 1982, 1986). More specialised books were
dedicated to theoretical aspects (e.g. of microwave remote sensing: Tsang et al. 1985) or to
special applications, like microwave radiometry of the atmosphere (Janssen, 1993).
Modern work on radiative transfer and scattering includes numerical methods, see e.g.
Tsang et al. (2000) and the lecture Notes of Warnick (2005).
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1 Introduction to Scattering and Absorption

1.1 Electromagnetic waves in matter
Although homogeneity is not exactly met in a world of atoms and molecules or in granular
media, in a physical sense the homogeneity requirement only means that any structural
feature of the medium must be much finer than the wavelength λ of a sensing wave. The
microscopic behaviour is reflected by bulk properties, and they are contained in the
constitutive relations between the electromagnetic fields. These relations apply to linear
media and are shown below. For most situations of interest, the media behave linearly. The
fields, i.e. the electric field E, the displacement field D, the magnetic field H, and the
magnetic induction field B, are governed by Maxwell's Equations. For homogeneous and
isotropic media (away from sources), and for time-harmonic fields with time factor exp(−iωt),
where t is time and ω is the angular frequency, Maxwell's Equations can be written as

∇ × H =
∂D
∂t

+ j = −iωD;      where   ∇ ⋅ D = ρe = 0 (1.1)

∇ × E = −
∂B
∂t

= iωB;       where   ∇ ⋅ B = 0 (1.2)

with the constitutive relations
D = εε0E  and B = µµ0H (1.3)

where ∇  is the nabla operator, ε is the (relative) dielectric constant (also called relative
electric permittivity), ε0=8.854⋅10-12As/V/m the vacuum permittivity, µ the relative magnetic
permeability and µ0=4π⋅10-7Vs/A/m the vacuum permeability. Furthermore, in chiral or bi-
isotropic media, also the electric and magnetic fields are linearly related (Sihvola, 1999). For
simplicity, let us assume isotropic media obeying (1.3). Eliminating the D, B, H fields from
(1.1) to (1.3) leads to the vector-wave equation in the unbounded homogenous medium for
E:

c 2∆E = −ω 2E (1.4)

Here ∆ is the Laplace operator, and c is the phase velocity in the medium, determined by

c =
c0

n
 ;   c0 =

1
ε0µ0

(1.5)

where c0 is the speed of light in vacuum. The refractive index n follows from
n = εµ (1.6)

or simply n = ε , for the frequent situation of non-magnetic materials (µ=1). For a plane
wave E∝exp(ikx−iωt) propagating along path x with wave number k, the Laplace -operated

electric field is ∆E =
∂ 2E
∂x 2 = −k 2E . Insertion in the wave equation leads to the dispersion

relation

k = ±n ω
c0

(1.7)

Since the x direction is arbitrary, the dispersion relation holds for all directions, and it is
independent of polarisation. In a medium with losses, the quantities are complex (k = k' + ik",
n = n' + in", ε = ε' + iε"), and they depend on frequency ν = ω /2π . The current density j
excited in a conducting medium by the electric field E is given by Ohm's Law j=σE where σ is
the conductivity.  In our notation j is expressed as a displacement current, −iωD, in Equations
(1.1-3), with the complex dielectric constant ε = ε'+iε"  whose imaginary part ε" is given by

ε"=
σ

ε0ω
(1.8)
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Therefore conductivity and imaginary permittivity are different representations of the same
effect. In our convention, the imaginary parts of n, ε and µ are positive for lossy media
(negative values of the opposite convention often used by electrical engineers are obtained
by the transformation to j = −i  for the imaginary unit). The losses are responsible for wave
attenuation, and if scattering is absent, the attenuation is due to absorption. Since the wave
intensity is proportional to E 2, its spatial variation is an exponential decay ∝exp(−2k" x),
and k" is the imaginary part of k. The damping coefficient 2k" is the absorption coefficient
γ a , and by (1.7), it is related to the imaginary refractive index n".

 γ a = 2k"=
2n"ω

c0

(1.9)

Finally, Equation (1.6) gives the relationship with the dielectric constant. For µ=1

γ a =
4π
λ0

ε'
2

1+
ε"2

ε'2
−1

 

 
  

 

 
  ≅

ε"ω
ε'c0

=
2πε"
ε'λ0

(1.10)

where λ0 is the vacuum wavelength, and the approximate expression is valid for small
dielectric loss (ε"<<ε').
The medium descriptors n, ε and µ depend on frequency (or wavelength), and on the
physical state and chemical composition, see von Hippel (1954) and the lecture on
microwave physics, especially the section on the  interaction with matter by N. Kämpfer,
http://www.iapmw.unibe.ch/teaching/vorlesungen/mikrowellenphysik/.

1.2 Effective medium and mixing formulas
Particles that are small with respect to a sensing wavelength are invisible, or they may
appear as point-like scatterers without any structure. Effective-medium theories use this
property of radiation to determine effective mean values, ε(r) and µ(r), for heterogeneous
or granular media with structures much smaller than the wavelength. The effective-medium
properties are expressed by mixing formulas (Sihvola, 1999). The topic is important
because the theory allows significant simplifications without losing the physical basis. Here
we will discuss one of the most important mixing rules:
The effective dielectric constant ε of a heterogeneous medium is defined on the basis of
fields (D and E) averaged over a volume sufficiently large to smear out the heterogeneity, but
still small with respect to the wavelength. The averaging is expressed by brackets < >. Let us
assume a host medium of dielectric constant ε1 with embedded particles of dielectric
constant ε2 and volume fraction f . Then the following equations can be set up:

< D >= εε0 < E >
< D >= (1− f ) < D1 > + f < D2 >
< E >= (1− f ) < E1 > + f < E2 >
< Di >= εiε0 < Ei >; i =1,2

(1.11)

In addition we need a relationship between the electrical field strengths in the particle and in
the host medium. Let us assume a proportionality:

< E2 >= K < E1 >; (1.12)

The set of equations leads to an expression for the effective ε:

ε =
(1− f )ε1 + fε2K

1− f + fK
(1.13)

By inserting the electrostatic K factor for spheres (see Section 3):
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K =
3ε1

ε2 + 2ε1

(1.14)

we get the Maxwell-Garnett (1904) mixing formula.

ε = ε1 1+ 3 f ε2 −ε1

ε2 + 2ε1 − f (ε2 −ε1)
 

 
 

 

 
 (1.15)

Equation (1.13) can be regarded as a generalised form of (1.15). In general K has to be
determined either experimentally or theoretically.
At this point let us consider two extreme situations. This will lead to bounds for the mixing
formula: Let the particles be plane-parallel slabs (Figure 1.1).

Figure 1.1: Plane-parallel slabs.

In Case 1, the slabs are parallel to the E field,
and in Case 2, they are perpendicular. Let us
recall from electrodynamics, that the following
boundary conditions apply to the E and D
fields at interfaces between different media:
The parallel components of E and the
perpendicular components of D are continuous.
Furthermore, in each component, the fields are
homogeneous.

Case 1: D and E are parallel to the boundaries. Thus E2=E1, and thus K=1. This means that
ε = (1− f )ε1 + fε2 (1.16)

Case 2: D and E are perpendicular to the boundaries. Thus D2=D1, and thus K=ε1 /ε2. Then

ε =
ε1ε2

ε2 − f (ε2 −ε1)
   or   1

ε
=

1− f
ε1

+
f

ε2

(1.17)

Whereas Case 1 corresponds to 2 capacitors connected in parallel, Case 2 corresponds to 2
capacitors connected in series. Let us consider two examples: (a) ε1=1 and ε2=2, and (b)
ε1=1 and ε2=10. The mixing formulas (1.15) - (1.17) are plotted in Figures 1.2a and b. The
figures show that in Case 2, ε is smaller than in Case 1, and Maxwell-Garnett formula is in
between. The differences increase with increasing contrast ε2/ε1. The two formulas (1.16) and
(1.17) are extreme limits.
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Figure 1.2a:
Effective dielectric constant
versus volume fraction f for
a medium with ε1=1, ε2=2,
according to Equations
(1.15), circles,
(1.16), solid line, and (1.17)
pointed line.

Figure 1.2b:
Same as Fig. 1.2.a, but with
ε1=1, ε2=10.

To compare the mixing formulas with experimental data we consider dry snow as a mixture
of ice particles (ε2=3.185) in air (ε1=1) in Figure 1.3.
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Figure 1.3: Dielectric
constant of dry snow (*)
at 1 GHz versus ice-
volume fraction in
comparison with
Equations (1.15) (o),
(1.16) (solid line) and
(1.17) (pointed line).

Exercise
Compute and discuss the absorption coefficient versus frequency in logarithmic frequency
scale from ν=1 to 1000 GHz for an effective medium consisting of water (for f=0.01 and
f=0.9) embedded in ice for Equations (1.15) to (1.17), assuming a real dielectric constant of
ice (ε1 = 3.17) and a Debye relaxation spectrum for the complex dielectric constant (ε2) of
water, according to

 ε2 = ε∞ +
εs −ε∞

1− iν /ν 0

(1.18)

where ν 0 = 8.8 GHz is the relaxation frequency at 0C, and the static and infinite-frequency
dielectric constants of water at 0C are, respectively, εs = 88 and ε∞ = 4.9 .

Solution:
a) Generalisation of the three situations according to Wiener (1910):

K =
ε1(1+ u)
ε2 + ε1u

(1.19)

where u is a free parameter, called Formzahl. Case 1: u=∞, Case 2: u=0, Case MG: u=2.
The tree situations can be described by the Wiener Mixing Formula

ε −ε1

ε + uε1

= f ε2 −ε1

ε2 + uε1

(1.20)

which is identical with (1.13) for K given by (1.19).
b) The effective dielectric constant ε also follows a Debye Relaxation spectrum:

ε = εm∞ +
εms −εm∞

1− iν /ν m 0

(1.21)

where the Debye parameters are given by (1.22):

εms = ε1
εs + uε1 + uf (εs −ε1)
εs + uε1 − f (εs −ε1)

; εm∞ = ε1
ε∞ + uε1 + uf (ε∞ −ε1)
ε∞ + uε1 − f (ε∞ −ε1)

; ν m0 = ν 0
εs(1− f ) + ε1(u − f )
ε∞(1− f ) + ε1(u − f )

(1.22)
Comment: This result is a behaviour of bilinear transformations in the complex plane where
circles transform to circles again (Cole Diagrams).
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c) Computing and plotting the absorption coefficient γ a  using MATLAB function "mixspectra":

Figure Ex1a:
Absorption coefficient versus

frequency for a medium
consisting of water particles
with volume fraction f=0.01
in a host of ice for three
different shapes using the
Formzahl u of Wiener.

Figure Ex1b: Same as Ex1a,
but for f=0.9.

Note that the shape effects are more accentuated at low frequencies. The transition from the
frequency-square to a frequency-independent behaviour of the absorption coefficient occurs
at the relaxation frequency νm0 of the mixture.
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2 Scattering and Absorption by Single Particles
This section follows Chapter 2 of Ishimaru (1978). Scattering is a result of a local disturbance
of the propagating incident wave. In vacuum, such a disturbance (scatterer) can be an atom,
a molecule, or an extended particle consisting of a dielectric or magnetic material. Here we
will assume that the scatterer is a dielectric particle described by a spatially variable dielectric
constant  ε(r)=ε'+iε". Similar scattering and absorption properties are found for magnetic
scatterers with a relative magnetic permeability µ(r)=µ'+iµ". The type of scattering to be
considered is elastic scattering, a linear process that keeps the angular frequency ω constant
(apart from possible Doppler effects for moving objects).

2.1 Cross sections and scattering amplitude

                           s

                                                                     i

Figure 2.1: Illustration of
scattering experiments.

Here the scatterer is a cloud

Transmitter

Receiver

scatterer

scattered w.
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A scattering particle is illuminated by radiation from an incident plane electromagnetic wave
whose electric field at position r and time t is the real part of the complex phasor

Ei = Ei0exp(ik⋅r-iωt). 

Here ω is the angular frequency, and k = ω /c = 2π /λ  is the wave number where λ is the
wavelength, c is the speed of light, and k=ki is the wave vector of the incident wave.
Part of the radiation is absorbed by the particle, another part is scattered in various
directions. At a sufficiently large distance R from the centre of the scatterer, the scattered
field Es at position r = sR  is a spherical wave:

Es(r) = f(s,i)Ei
exp(ikR − iω t)

R
(2.1)

Here the vector f(s,i) is called scattering amplitude, i and s are unit vectors in the directions
of the incident and scattered wave, respectively. The scattering amplitude describes the
directional dependence of the scattering process (sometimes the amplitude of the incident
wave is set to Ei =1 which means that the electric field is normalised). The dimension of f is
length (m).
Ishimaru (1978, p.10-17) developed an electrodynamics expression for f for a dielectric
scatterer with volume Vs in vacuum:

f(s,i) =
k 2

4π Ei

−s × s × E(r')[ ]{ }⋅ ε(r') −1{ }exp(−ikr'⋅s)dV '
Vs

∫ (2.2)

The exponential term in the integral is a far-field phase correction of the spherical wave in
(2.1) for points excited away from the scattering centre. The integral requires knowledge on
the electric field E(r') inside the scatterer. A problem is to find this internal field. For the
moment we assume this problem to be solved.
The incident and scattered intensities Ii and Is (power per unit area) are proportional to the
squared absolute value of the respective electric fields, namely:

Ii,s =
Ei,s

2

2Z0

where Z0 =
µ0

ε0

= 277Ω vacuum impedance (2.3)

where µ0 and ε0 are the vacuum permeability and permittivity, respectively. Thus we get

Is = Ii
f 2

R2 (2.4)

The nominator f 2=σd (dimension of an area) is called the differential scattering cross
section σd.  Here, we will use the bistatic scattering cross section σbi, defined by

σbi=4πσd = 4π 2),( isf (2.5)

The total-scattered power Ps is the integral of Is over a closed surface A around the scatterer.
Let us choose a spherical surface A of radius R; then the integral becomes

Ps = IsdA
A
∫ = IsR

2dΩ
4 π
∫ = Ii σ d dΩ

4 π
∫ = Iiσ s (2.6)

The last quantity σs is the scattering cross section which can also be expressed by

σ s =
P s

Ii

=
1

4π
σ bi

4 π
∫ dΩ (2.7)

In this form σs appears as the angular average of σbi. In analogy to σs the absorption cross
section σa is the ratio of the power Pa absorbed by the particle to the incident intensity:

σ a =
Pa

Ii

(2.8)

A formal expression for Pa, again requiring the internal E field, was given by Ishimaru (1978)



15

Pa = 0.5ε0ω ε"(r')E(r ')
V
∫ 2

dV ' (2.9)

This power is just the Ohmic loss due to the electrical current density j=σE excited in the
particle. Inserting (2.9) and (2.3) in (2.8) gives

σ a =
ω
c

ε"(r')K(r ') 2

V
∫ dV ' where K(r ') 2 =

E(r')
Ei

2

(2.10)

The total cross section, also called extinction cross section, is the sum
σ e = σ s + σ a (2.11)

As we will see below there exists another expression that allows to determine the extinction
cross section. For completeness we also define the radar cross section (backscatter) by

σb = 4π f(−i,i) 2 (2.12)

2.2 Forward-Scattering Theorem
See also Ishimaru (1978, p. 14-15), van de Hulst (1957, p. 30-31).
The extinction cross section represents the total power loss from the incident wave. This loss
is related to the behaviour of the scattered wave in the forward direction (incident direction),
and this relationship is expressed by the forward-scattering theorem, also called optical
theorem or extinction theorem. It says that the scattering amplitude in the direction s=i is
related to σe by

σ e = 2λ Ei

Ei

⋅ Im f(i,i)[ ] (2.13)

The application of (2.13) requires the scattering amplitude to be known with sufficient
accuracy. For approximations found by geometrical optics or Rayleigh scattering, the
application of the theorem leads to incorrect results.

2.3 Efficiencies
Often it is convenient to use non-dimensional quantities to express the various interactions.
This is achieved by dividing the cross sections by the geometrical cross section σg of the
scatterer. The resulting quantities are called efficiencies Qi:

Qa =
σ a

σ g

; Qb =
σ b

σ g

; Qbi =
σ bi

σ g

; Qe =
σ e

σ g

;  Qs =
σ s

σ g

   (2.14)

These absorption, backscatter, bistatic, extinction and scattering efficiencies, respectively,
are not limited to numbers smaller than 1. Under certain conditions a particle can absorb or
scatter more radiative power than the power which crosses an area equal to σg.

2.4 Scattering Matrix
The incident and scattered fields, Ei and Es or f, are vectors with a rather complex
relationship (2.2). Nevertheless it is a linear one (2.1), thus it can be described by an
amplitude-scattering matrix. As a convention the incident direction is the x3 direction of a
Cartesian coordinate system (x1,x2,x3), and scattering takes place in the (x2,x3) plane, thus
scattering is from a direction (unit vector) i=(0,0,1) to s=(0,s2,s3), with s2 = sinϑ  and
s3 = cosϑ , where ϑ  is the scattering angle. The incident electric field Ei makes a
polarisation angle ϕ with respect to the scattering plane, having components perpendicular
⊥ and parallel  to this plane and thus to x2, see following figure (Note that other conventions
exist as well):



16

              x2    Ei                                                            Es

                                                                                                    Es⊥

                                                                                    s
                              x3 ,  i                       scatterer                ϑ
       x1 , Ei⊥
Figure 2.2: Scattering geometry with scattering in (x2,x3) plane showing parallel and perpendicular components of

the incident and scattered electric fields.

According to Figure 2.2 the direction of the perpendicular Ei⊥ component does not change by
the scattering process. However the parallel component changes from Ei = (0, Ei ,0) to a
scattered component of the form Es = (0, Es cosϑ , Es sinϑ ).
The relationship between Es and Ei is described by a (2x2) scattering matrix F, consisting of
elements fij, i, j=1,2:

Es(r) = F(s,i) ⋅ Ei(0) exp(ikR)
R

(2.15a)

where the fields are now split into the perpendicular and parallel components:
Es⊥ (r)
Es (r)

 

 
 

 

 
 =

f11 f12

f21 f22

 

 
 

 

 
 ⋅

Ei⊥ (0)
Ei (0)

 

 
 

 

 
 

exp(ikR)
R

(2.15b)

For comparison between the conventions of Ishimaru (1978) and van de Hulst (1957), see
Table 2.1 below.

Dielectric scatterer
in a vacuum

Convention of Ishimaru (1978)
p.10–14, 33-36

Conv. of van de Hulst (1957)
p. 12, 29, 34, 35, 125

Incident wave at
scatterer r=0:

oscillating E-field with
unit amplitude

Ei(r=0)=
Ei⊥

Ei

 

 
 

 

 
 =ei⋅exp(-iω t);

1=ie ,e i =
ei⊥

ei

 

 
 

 

 
 =

sinϕ
cosϕ

 

 
 

 

 
 

E0=
Er0

El 0

 

 
 

 

 
 =e0⋅exp(jω t);

10 =e , e0 =
er0

el 0

 

 
 

 

 
 =

sinϕ
cosϕ

 

 
 

 

 
 

Scattered wave:
E- field at distance R

Relations between
quantities:

j=−i
f11=iS1/k, f22=iS2/k
f21=iS3/k, f12=iS4/k

Es =
Es⊥

Es

 

 
 

 

 
 = f(s,i) exp(ikR − iωt)

R

f(s,i) =
f⊥

f
 

 
 

 

 
 = F ⋅

ei⊥

ei

 

 
 

 

 
 

F =
f11  f12

f21  f22

 

 
 

 

 
 

Scalar:

u = S(ϑ ,ϕ) exp(− jkR + jωt)
jkR

Vector*: Es =
Er

El

 

 
 

 

 
 =

S1  S4

S3  S2

 

 
 

 

 
 ⋅

er0

el 0

 

 
 

 

 
 

exp( jωt − jkR)
jkR

Forward-scattering
theorem σe ≡ σt = (4π/k)Im[f(i,i)]⋅ei Ce = (4π/k2)Re[S(0)]
Differential scattering

cross section σd = |f(s,i)|2
2

2

2
0

2

k

S

k
F

I
Ir sca ==

Scattering cross
section

σs = ∫
π

Ωσ
4

dd Csca = ∫
π

Ω
4

2
1 Fd

k
Table 2.1: Comparison of conventions used to describe elastic scattering. Note * that the sequence of the

components by van de Hulst has been inverted to adapt to the one of Ishimaru. The original relationship is
equivalent, but reads
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El

Er

 

 
 

 

 
 =

S2  S3

S4  S1

 

 
 

 

 
 ⋅

el 0

er0

 

 
 

 

 
 

exp( jωt − jkr)
jkr

(2.15c)

Furthermore Bohren and Huffman (1983), in short BH, use this convention with j = –i:
E s

E⊥s

 

 
 

 

 
 =

S2  S3

S4  S1

 

 
 

 

 
 ⋅

E i

E⊥i

 

 
 

 

 
 

exp(ikr)
−ikr

(2.15d)

2.5 Polarisation
So far we have assumed a fully coherent wave Ei = Ei0exp(ik⋅r-iωt). Such a wave is totally
polarised. Radiation, however, consists of waves at different frequencies ω, often covering a
wide spectrum and including different polarisations. Scattering and other processes may
depend on ω. Therefore one has to investigate the frequency dependence by focussing on
quasi-monochromatic radiation (within a narrow frequency interval). This radiation can be
described as before, but with the amplitude Ei0 and an additional phase to fluctuate slowly
with time. The quantities of interest are then specified by time averages describing the
mean intensity and polarisation. The polarisation state of the radiation is expressed by four
different intensities, called Stokes Parameters, collected in an intensity vector I = (I,Q,U,V).
An alternative Stokes Vector I is defined by I = (I1,I2,U,V). The temporal averages (where
2Z0 has been neglected for simplicity) are expressed by 

I1 = E⊥
2 ; I2 = E

2
; U = 2Re(E⊥ E *) ; V = 2Im(E⊥ E *) (2.16)

The total intensity is given by the sum I=I1+I2, the difference is called Q=I1−I2, and the degree
of polarisation (0 ≤ ρp ≤ 1) is given by

ρp =
Q2 + U 2 + V 2

I
(2.17)

The scattering matrix for the electric field can be transformed to a scattering matrix for the
Stokes parameters. A scatterer transforms the alternative Stokes Vector Ii  (I1,I2,U,V) of the
incident radiation to the one of scattered radiation Is by a linear process according to

Is = M⋅Ii (2.18)
where the Müller Matrix M is given by (Ishimaru, p. 35):





















−+
−−+

−

−

=

)Re()Im()Im(2)Im(2
)Im()Re()Re(2)Re(2

)Im()Re(

)Im()Re(

*
2112

*
2211

*
2112

*
2211

*
22122111

*
2112

*
2211

*
2112

*
2211

*
22122111

*
2221

*
2221

2
22

2
21

*
1211

*
1211

2
12

2
11

ffffffffffff
ffffffffffff

ffffff

ffffff

M    (2.19)

Note that the 16 elements of M are not independent. For properties of M for scatterers with
special symmetries, see van de Hulst (1957), Chapter 5. For general descriptions of
polarisation, see Bohren and Huffman (1983), p. 44-56, and Kraus (1966).
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3. Approximate Scattering and Absorption Models
A number of approximate descriptions of scattering and absorption exist. The most important
models are presented here. The common assumption is that the scatterers with a dielectric
constant ε are situated in free space with dielectric constant of 1 (else, if the propagating
medium has a dielectric constant different from 1, then ε may be regarded as the ratio of the
dielectric constant of the scatterer to the one of the surrounding medium).

3.1 Rayleigh scattering and absorption by spheres
The scatterer is a small sphere. Rayleigh scattering is an approximate solution of the
scattering for particles much smaller than the wavelength. For a sphere of radius a, we
require that the size parameter x is sufficiently small:

x =
circumference

wavelength
=

2πa
λ

= ka <<1 (3.1)

This means that the phase of the electric field inside the particle is everywhere the same as
in the electrostatic situation, and the exponential function in (2.2) →1 because the argument
→0. The internal field is obtained from the electrostatic solution (Eder 1967; BH 1983):

E(r') =
3

ε + 2
Ei (3.2)

This is a homogeneous field (E< Ei for ε>1) and parallel to the incident electric field.

Scattering amplitude
Inserting (3.2) in Equation (2.2), and noting that the scatterer volume is Vs = 4πa3 /3, the
scattering amplitude becomes

f(s,i) = a3k 2 ε −1
ε + 2

−s × s × e i[ ]{ } (3.3a)

where ei is the unit vector describing the direction of the incident electric field.  Equation (3.3)
can also be regarded as the scattering amplitude from an electric dipole with dipole moment

p = αε0e i for a unit-amplitude incident field and polarisability α = 4πa3 ε −1
ε + 2

 of the

sphere:

f(s,i) =
k 2

4πε0

−s × s × p[ ]{ } (3.3b)

This simple expression is valid for all kinds of small particles.

Cross sections and efficiencies
If we denote the angle between incident electric field and the scattering direction by χ, we get
for the bistatic scattering cross section

σ bi = 4π f(χ) 2= 4πa6k 4 ε −1
ε + 2

2

sin2 χ (3.4)

The scattering cross section requires the integral of (3.4) over all scattering directions:

σ s = f(χ) 2 dΩ
4π
∫ = 2a6k 4 ε −1

ε + 2

2

dφ sin2 χ ⋅ sinχdχ
0

π / 2

∫
0

2π

∫ =
8π
3

a6k 4 ε −1
ε + 2

2

(3.5)

and the scattering efficiency becomes:
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Qs =
σ s

πa2 =
8
3

(ak)4 ε −1
ε + 2

2

=
8
3

x 4 ε −1
ε + 2

2

(3.6)

Due to the high power of x the Rayleigh scattering rapidly diverges to unrealistically large
values when x approaches or exceeds 1.

Figure 3.1: Dipole radiation pattern for Rayleigh scattering: solid lines for parallel, dashed line for perpendicular
field. The length of the vectors in s direction are proportional to the scattered field strength.

The absorption cross section requires the integral of Equation (2.10):

σ a =
ω
c

ε"(r')K(r ') 2

V
∫ dV ' =

12πa3k
ε + 2 2 ε";  then  Qa =

12ak
ε + 2 2 ε"=12x ε"

ε + 2 2   (3.7)

 Application of the forward-scattering theorem to the expression (3.3) gives

σ e = 2λe i ⋅ Imf(i,i) = 2λa3k 2 Im ε −1
ε + 2

 
 
 

 
 
 = 4πa3k Im ε −1

ε + 2
 
 
 

 
 
 =

12πa3kε"
ε + 2 2  (3.8)

which is identical to the expression (3.7) for the absorption cross section. Equation (3.8) is
inaccurate due to the approximate nature of the Rayleigh-scatter formula. In fact, since x<<1
is required, the term x4 appears to be negligible with respect to the term proportional to x. An
exception occurs for low-loss materials (ε"→0) if xε" < x4. A better result for the extinction
cross section is obtained from the sum of (3.6) and (3.7).
The backscattering cross section σb (or radar cross section) is determined from σbi for s=−i:

σ b = 4π f(χ = π /2) 2 = 4πa6k 4 ε −1
ε + 2

2

(3.9)

This quantity is larger by a factor 3/2 than σs.

Amplitude scattering matrix
The scattering matrix consists of 2 non-zero elements: f11 and f22; the cross-polarisation
terms vanish.

f11 = a3k 2 ε −1
ε + 2

;  f22 = a3k 2 ε −1
ε + 2

cosϑ (3.10)

Müller matrix

M = a6k 4 ε −1
ε + 2

2

1 0 0 0
0 cos2 ϑ 0 0
0 0 cosϑ 0
0 0 0 cosϑ

 

 

 
 
 
 

 

 

 
 
 
 

(3.11)
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3.2 Rayleigh scattering and absorption by ellipsoids
Rayleigh scattering by ellipsoids follows the same rule as found for spheres (3.3), but with
different polarisabilities. Equivalently, the ratio of the internal to the incident electric field is
different, too, and may depend on the particle orientation. Therefore a tensor formulation is
adequate. If the main axes of the ellipsoid are parallel to the Cartesian coordinate system
used, the tensor K is diagonal:

E(r') = K ⋅ Ei;  K =
K11 0 0
0 K22 0
0 0 K33

 

 

 
  

 

 

 
  
     (3.12)

This field is homogeneous inside the particle, but may not be parallel to Ei. For ellipsoids, the
diagonal elements of K are given by

K jj =
1

1+ (ε −1)A j

;  j =1,2,3 ;  A1 + A2 + A3 =1 (3.13)

The parameters Aj are the so-called depolarisation factors; they are non-negative numbers,
and their sum is unity. For spheres Aj=1/3 which leads to Equation (3.2). Another
simplification is given by assuming spheroidal particles where two of the three main axes,
and thus two of the three depolarisation factors, are equal. By choosing the equal
parameters to be A=A1=A2, A3 is found from (3.13):

A3 =1− 2A (3.14)

Small values, A <1/3, represent oblate spheroids while higher values, A>1/3, the maximum
being 0.5, represent prolate spheroids. It is possible to express A by the axial ratio X of the
spheroids, defined by  X= (minor axis)/(major axis) ≤1. For oblate and prolate spheroids A
can be computed from the upper and lower Equation (3.15), respectively, as (e.g. von Hippel,
1954, Appendix):

A =

X
2(1− X 2)

arccos(X)
1− X 2

− X
 

 
 

 

 
 ; oblate

1
2(1− X 2)

1−
X 2

2 1− X 2
ln1+ 1− X 2

1− 1− X 2

 

 
 
 

 

 
 
 

; prolate

 

 

 
 

 

 
 

 (3.15)

Figure 3.2:
Depolarisation factor A

versus axial ratio X of
prolate (upper) and oblate
(lower curve) spheroids.
The two curves join at the
value 1/3 valid for
spheres.
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Inserting (3.12) in Equation (2.2), and noting that the scatterer volume is given by
Vs = 4πa1a2a3 /3 where a j  (j=1,2,3,) are the semi axes of the ellipsoid, the scattering
amplitude becomes

f(s,i) =
a1a2a3k

2(ε −1)
3

−s × s × (K ⋅ e i)[ ]{ } (3.16)

If ei is parallel to main axis j, the bistatic scattering coefficient is given by

σ bi(s,i) j = 4π (a1a2a3)2 k 4

9
ε −1

1+ (ε −1)A j

2

sin2 χ (3.17)

Since the different Aj may change between 0 and 1, the scattering may strongly depend on
the particle orientation. The same is true for the absorption cross section

σ aj =
4πa1a2a3kε"

3
1

1+ (ε −1)A j

2

(3.18)

Highest scattering and absorption are found for Aj→0, i.e. if ei is parallel to needles or plates.

3.3 Born Approximation
For scattering by a medium whose dielectric constant is close to 1 (or more general close to
the value of the surroundings) the internal field is close to the incident field. In the Born
approximation (also called Rayleigh-Gans Approximation) these fields are assumed to be the
same:

E(r') = Ei = Ei0exp(ik⋅r-iωt) = Ei0eiexp(ik⋅r-iωt) (3.19)

Examples include air volumes at different density, moisture and temperature in the
atmosphere. Phase and amplitude errors of waves travelling through the particle can be
neglected as long as kD(n'-1)<<1, kDε"<<1 where D is the particle diameter, and
n = n'+in"= ε  is the complex refractive index. Substituting (3.19) in (2.2) and omitting the
time factor gives

f(s,i) =
k 2 −s × s × e i[ ]{ }

4π
ε(r') −1{ }exp ikr'⋅(i − s)[ ]dV '

Vs

∫ (3.20)

As an example let us assume that the scatterer is a sphere of radius a. Then

f(s,i) =
k 2 −s × s × e i[ ]{ }(ε −1)

4π
F(ϑ ) (3.21)

where F (with ∆k = k(i − s)) is given by

F(ϑ ) = exp(−i∆k ⋅ r')dV '
V
∫ = exp(ikd rcosθ)r2drsinθdθdφ

0

2π

∫
0

π

∫
0

a

∫ (3.22)

where ∆k = k(s − i), ∆k = kd = 2k sinϑ
2

, and θ is the angle between the -∆k and r. The

integral in (3.22) is to be taken over the sphere volume. Inserting the result

F(ϑ ) =
4πa
kd

2
sinkd a

kd a
− coskd a

 

 
 

 

 
 (3.23)

in (3.21) gives

f(ϑ ) = −s × s × e i[ ]{ }a3k 2(ε −1)
(kd a)2

sinkd a
kd a

− coskd a
 

 
 

 

 
 (3.24)
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The bistatic scattering cross section becomes

σ bi = 4π f(ϑ ) 2 = sin2 χ
4πa6k 4 ε −12

(kd a)4
sinkd a

kd a
− coskd a

 

 
 

 

 
 

2

(3.25)

and the absorption cross section is simply given by

σ a =
ω
c

ε"(r')
V
∫ dV ' = 4πa3k

3
ε" (3.26)

Figure 3.3: Bistatic
scattering
efficiencies
Qbi = σ bi /(πa2)
for x = ka =1,
ε=2, for
perpendicular
(dashed) and for
parallel
polarisation (solid
line).

Bragg scattering
Another application of the Born approximation is for scattering by periodic or random media
whose dielectric constant changes locally from point to point around a mean value. This is
called Bragg scattering. Let us assume that the mean value of ε is 1. Then δ(r)=ε(r)-1 is a
real random function with zero mean. Then

f(s,i) =
k 2 −s × s × ei[ ]{ }

4π
D(∆k); D(∆k) = δ(r')exp −i∆k ⋅ r'[ ]dV '

Vs

∫ (3.27)

Note that the integral is proportional to the three-dimensional Fourier Transform of  δ(r)
where δ(r)=0 at positions outside Vs. If we know the actual function δ(r) at all points, the
integral can be computed directly. Often, only statistical properties of the medium may be
known. This can be sufficient to compute the bidirectional scattering cross section, using the
autocorrelation theorem (Bracewell, 1965). Let us first introduce the autocorrelation function

A(r) =
1

Vsσδ
2 δ(r ')δ(r '+r)dV '

Vs

∫ ; with the variance σδ
2 =

1
Vs

δ 2(r')dV '
Vs

∫ (3.28)

This function tells how much spatial correlation exists in the dielectric function ε(r). Note that
A is normalised to A(0)=1. Now, the autocorrelation theorem states that D(∆k) 2 is the three-
dimensional Fourier Transform of A(r):

D(∆k) 2 = Vsσδ
2 A(r')exp −i∆k ⋅ r'[ ]dV '

Vs

∫ (3.29)
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Thus we get

σ bi = 4π f(ϑ ) 2 =
k 4 sin2 χ

4π
D(∆k) 2 (3.30)

Random granular media, like sand or snow (see Figure 3.4), often have an exponential
autocorrelation function

A(r) = exp(−r / pc ) ; where r = r  and pc is called correlation length (3.31)

Figure 3.4a: Thin sections (3cmx3cm) of depth hoar (Schwimmschnee) left, and fine-grained snow (right).

Figure 3.4b: Autocorrelation functions computed of thin sections of Figure 3.4a (from Wiesmann et al. 1998).

Inserting (3.31) into (3.29) leads to

D(∆k) 2 = 4πVsσδ
2I; I =

1
kd

A(r)rsin(kd r)dr
0

∞

∫ = 2pc
3

(1+ kd
2 pc

2)2 (3.32)

σ bi =
2k 4Vsσδ

2 pc
3 sin2 χ

(1+ kd
2 pc

2)2 (3.33)

There is a certain similarity with Rayleigh scattering, compare with (3.4). The correlation
length pc functions as a grain "size". Assuming the grains to be N spheres of radius a in a
diluted cloud volume Vs >> 4πa3 /3 we get from (3.28) for
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Vsσδ
2 = N 4πa3

3
ε −12 (3.34)

For kd pc <<1 this corresponds to Rayleigh scattering by N independent spheres where
a ≅ pc. For snow, see an improved Born Approximation by Mätzler (1998) and its application
to microwave radiometry by Mätzler and Wiesmann (1999).
Whereas Rayleigh scattering diverges for large size parameters, this is not the case for the
Born Approximation (3.33). If kdpc>>1 the bistatic scattering coefficient becomes frequency
independent and converges to (for ϑ  not too close to 0)

σ bi =
Vsσδ

2 sin2 χ

8pc sin4 ϑ
2

(3.35)

Indeed this formula is not far from reality for scattering by snow crystals in the visible and
near infrared range. Scattering decreases with increasing pc. in contrast to the microwave
range.

Remarks on the correlation length
To get a better idea about the correlation length we present 3 different, but equivalent
definitions, assuming an isotropic 2-component granular medium in 3 dimensions.
1) The first definition is based on the derivative of the 3-dimensional, spatial autocorrelation
function A(r), with A(0)=1, and with r being the scalar displacement (Debye et al. 1957):

pc = −
dA(r)

dr
 
 
 

 
 
 

−1

r= 0

(3.36)

2) Secondly, according to Debye et al. (1957), pc is related to the specific surface s =S/V (S
is the total surface area in a volume V, and f is the volume fraction of the grains)

pc =
4 f (1− f )

s
(3.37)

3) From the mean intercept lengths (Durchstichslängen) in ice Li and in air La (stereological
parameters derived from thin sections), we get a third relationship:

pc =
LaLi

La + Li

(3.38)

Particle Type Dmax pc
Sphere, diameter D D

3
2D

Oblate spheroid (plate):
thickness Dmin << diameter Dp

Dp

3
4 minD

Prolate spheroid (needle):
diameter Dmin << length Ln

Ln

π3
8 minD

Cup (spherical shell): shell
thickness d << diameter D2

D2 2d

Table 3.1: Relations between particle size
Dmax and correlation length pc of
isotropically distributed particles,
according to Mätzler C. "Autocorrelation
functions of granular media with free
arrangement of spheres, spherical shells
or ellipsoids", J. Applied Physics, 81(3),
1509-1517, (1997).

Thus pc is the smallest characteristic dimension of the particle.
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3.4 Geometrical Optics

3.4.1 Reflecting sphere
A simple type of geometrical optics is obtained if we assume that matter consists of
homogeneous objects with step-like transitions in between. The boundaries  consist of
smooth interfaces. In such a model light rays are straight lines within the object, and
scattering results by reflection and refraction at the boundaries as described by the
Fresnel Equations and Snell's Law, respectively. Diffraction is ignored.
As a simple example let us consider scattering by a homogeneously illuminated (from the
left, s. Figure below) and perfectly reflecting sphere (surface reflectivity r =1). Due to the
symmetry around the axis of illumination, the scattering (reflection) only depends on the
incidence angle θ which is related to the scattering angle ϑ .

Figure 3.5: Reflection of rays on a sphere according to geometrical optics.

Since all incident radiation is completely reflected the refracted ray is missing. Thus we only
consider reflected rays. Let us consider all radiation scattered within an angular interval
(ϑ ,ϑ + dϑ ). As shown in Figure 3.5, the impact parameter p and sphere radius a are
related to the incidence angle θ  (and thus to scattering angle ϑ ) by

p = asinθ ; dp = acosθdθ (3.39)

The scattered power dPs with scattering angles in the range (ϑ ,ϑ + dϑ ) and thus in the
solid angle dΩ = 2π sinϑdϑ  is dPs = Ii2πpdp, and thus with 2sinθ cosθ = sinϑ  we get

σ bi

4π
=

1
Ii

dPs

dΩ
=

pdp
sinϑdϑ

= a2 sinθ cosθ
sinϑ

dθ
dϑ

=
a2

4
(3.40)

This result means that scattering is isotropic, and with Equation (2.6) and (2.7) we get
σ bi = σ s = σ b = σ g = πa2 (3.41)

Since no radiation enters the sphere, there is no absorption, and thus σ a=0. Therefore
σ e = σ g , and the efficiencies are

Qbi = Qs = Qe = Qb =1, and Qa = 0. (3.42)

In the following section we consider the situation of partly transparent spheres.
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3.4.2 Partly transparent spheres, rainbows
Scattering by dielectric or magnetic spheres can also be treated in geometrical optics. This
will reveal effects such as rainbows. In addition to the reflected ray there are transmitted rays
and rays with internal reflections as shown in the following figure.

Figure 3.6: Refraction and reflection of light in a sphere, showing reflected and transmitted rays and ray of the first
rainbow with scattering angles ϑ r = π − 2α , ϑ t = 2(α − β) , ϑ1 = π + 2α − 4β , respectively. The
sphere centre is in the scattering plane. Incidence angle is α, impact parameter p.

The scattered intensities of the reflected and transmitted rays and of the rainbow rays can be
computed with geometrical optics. First, for a given impact parameter p  and radius a , the
incidence angle α  is given by

sinα = p /a (3.43)

The transmitted angle β after refraction is according to Snell’s Law
sinβ = sinα /m (3.44)

where m is the refractive index of the sphere. Note that, for a given p, all α and β are the
same wherever the ray crosses the sphere surface. The scattering angles of the reflected
and of the transmitted rays are given by

ϑ r = π − 2α  ; ϑ t = 2(α − β) (3.45)

The scattering angle of rays with j internal reflections is according to van de Hulst (1957),
Bohren and Huffman (1983)

ϑ j = π + 2 α − ( j +1)β[ ];  j odd,  else: ϑ j = 2 ( j +1)β −α[ ] (3.46)

After leaving the sphere, each ray contributes to the scattered power by dPs, j = I jL jdA
where the projected impact area, seen by the ray, is dA = pdpdϕ  = a2 cosα sinαdαdϕ , Ii is
the incident intensity, and Lj is the loss factor due to reflection and/or transmission. The
contribution to the bistatic scattering coefficient by a given ray is determined by

σ bi, j

4π
=

1
Ii

dPs, j

dΩ
; j = r, t, 1, 2,... (3.47)

and since dΩ = −sinϑ jdϑ jdϕ , we get

σ bi, j = 4πa2L j
cosα sinα

sinϑ j

dα
dϑ j

= 2πa2L j
sin2α
sinϑ j

dα
dϑ j

(3.48)
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The azimuth terms dϕ cancel, and the total bistatic scattering coefficient/efficiency is the sum

σ bi = σ bi, j
j= r,t ,1,2,...
∑ ;  Qbi =

1
πa2 σ bi, j

j= r,t,1,2,...
∑ (3.49)

Rainbows appear where rays are concentrated. Peaks occur at positions where 
dϑ j

dα
= 0 ,

there σ bi, j → ∞ . This happens at angles αj and βj given by

cosα j =
m'2 −1

( j +1)2 −1
;  sinβ j =

1
m'

( j +1)2 − m'2

( j +1)2 −1
(3.50)

Values of ϑ1 and ϑ 2  in the interval 1< m'=Re(m) <2 are shown in below.

Figure 3.7: Scattering
angles of first and
second rainbow
peaks versus
refractive index m'.

Computation of σ bi, j

Reflected ray, j=r:
Lr  is the reflectivity at the sphere surface which can be computed with the Fresnel
Formulas, using the (complex) relative impedance Z and refractive index m of the sphere

Z =
µ
ε

; m = µε ; (3.51)

For µ=1 we have m=1/Z. The reflection coefficients of the electric field at perpendicular and
parallel polarisation with respect to the scattering plane can be expressed as

R⊥ =
Z cosα − cosβ
Z cosα + cosβ

; R =
Z cosβ − cosα
Z cosβ + cosα

Fresnel Formulas for amplitude (3.52)

and the respective power reflectivities are

r⊥ = R⊥
2 ; r = R

2
 Fresnel Formulas for power (3.53)

Then
Lr = r = r⊥ (α = π /2 −ϑ r /2) ⋅ sin2 ϕ + r (α = π /2 −ϑ r /2) ⋅ cos2 ϕ (3.54)

and from  
dα
dϑ r

= −
1
2

  and  sin2α = sinϑ r   we get

σ bi,r = 4π fr
2 = πa2r ;  Qbi,r = r , and r = r⊥ sin2 ϕ + r cos2 ϕ (3.55)
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Note that Qbi→1 for ϑ = 0  (θ=π/2). For the scattering amplitudes we get

f11,r =
aR⊥ (α = π /2 −ϑ /2)

2
; f22,r =

aR (α = π /2 −ϑ /2)
2

 (3.56)

Transmitted ray, j=t:
Lt  is the loss due to 2 transmissions (1− r)2 through the sphere surface and due to the
absorption loss exp(−γ ab) over the propagation path b = 2acosβ  within the sphere; therefore

Lt = (1− r)2 exp(−2γ aacosβ) (3.57)

The derivative  
dα
dϑ t

 follows from ϑ t = 2(α − β)  with sinβ = sinα /m :

Note: In case of an imaginary refractive index, m has to be replaced by its real part.
dϑ t

dα
= 2 1−

dβ
dα

 
 
 

 
 
 = 2 1−

cosα
m2 − sin2 α

 

 
 

 

 
 (3.58)

σ bi,t = 4πa2Lt
sinα cosα

sinϑ t

dα
dϑ t

(3.59)

Ray of first rainbow, j=1:
L1 is the loss due to 2 transmissions and one reflection (1− r)2 r  through/at the sphere
surface and due to the absorption loss exp(−2γ ab) over the propagation path 2b = 4acosβ
within the sphere; therefore

L1 = (1− r)2 rexp(−4γ aacosβ) (3.60)

The derivative  
dα
dϑ1

 follows from ϑ1 = π + 2α − 4β :

dϑ1

dα
= 2 1− 2 dβ

dα
 
 
 

 
 
 = 2 1−

2cosα
m2 − sin2 α

 

 
 

 

 
 (3.61)

Ray of second rainbow, j=2:
L2 is the loss due to 2 transmissions and 2 reflections (1− r)2 r2  through/at the sphere
surface and due to the absorption loss exp(−3γ ab)  over the propagation path 3b = 6acosβ
within the sphere; therefore

L2 = (1− r)2 r2 exp(−6γ aacosβ) (3.62)

The derivative  
dα
dϑ 2

 follows from ϑ 2 = 6β − 2α :

dϑ 2

dα
= 2 3 dβ

dα
−1

 
 
 

 
 
 = 2 3cosα

m2 − sin2 α
−1

 

 
 

 

 
 (3.63)

Absorption cross section
Absorption occurs for rays propagating through the sphere. The absorbed fractions on
transects (secants of length b = 2acosβ ) No. 1, 2, 3, 4,  etc. are

1: (1− r) 1− exp(−2γ aacosβ)[ ]
2: (1− r) 1− exp(−2γ aacosβ)[ ]rexp(−2γ aacosβ)
3: (1− r) 1− exp(−2γ aacosβ)[ ]r2 exp(−4γ aacosβ)
4: (1− r) 1− exp(−2γ aacosβ)[ ]r3 exp(−6γ aacosβ) (3.64)

etc.

The sum of all terms is a geometrical series, giving
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 La =
(1− r) 1− exp(−2γ aacosβ)[ ]

1− rexp(−2γ aacosβ)
(3.65)

 The power absorbed by these rays is
dPa = pdϕdpIiLa (3.66)

and the absorption cross section becomes

 σ a =
Pa

Ii

= dϕ
0

2π

∫ La pdp
0

a

∫ (3.67)

The integration over ϕ is approximated by replacing r by the mean value 0.5 r⊥ + r( ) in La .
Then we are left with the numerical integration over p

σ a =
Pa

Ii

= 2π La pdp
0

a

∫ (3.68)

Scattering cross section
The scattering cross section is the mean value of σbi. It is easier, however, to use the fact
that in geometrical optics we have σ e = πa2 ; then

σ s = πa2 −σ a (3.69)

Numerical example
Dielectric sphere with m=1.44+10-5i, x=4000, MATLAB: fresnelsphere1(ε, µ, x)

Figure 3.8: Scattering angles of the different rays versus incidence angle for m' =1.44.
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Figure 3.9: Bistatic scattering efficiencies at perpendicular (h) and parallel (v) polarisation in geometrical optics,
showing results for the sums of the reflected and transmitted rays and for the 1st and 2nd rainbows for a

dielectric sphere with  m=1.44+10-5i.

Figure 3.10: Bistatic scattering efficiencies at perpendicular (h) and parallel (v) polarisation in geometrical optics
of the reflected and transmitted rays for the situation of Figure 3.9
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4 Lorenz-Mie Scattering and Absorption by Spheres
There exists an exact theory for scattering and absorption by a homogeneous, dielectric
and/or magnetic sphere of any size. It was developed by Ludvig V. Lorenz in 1890 and by
Gustav Mie (1867-1957) in 1908. Here we will make use of the treatment by BH (1983), and
of respective reports describing MATLAB functions for numerical computations by Mätzler
(2002/04). The theory can be extended to coated spheres (spherical shells) or concentrically
layered spheres. We will discuss situations of coated spheres consisting of a homogeneous
core surrounded by a coating. For derivations and further discussions, see BH (1983), van
de Hulst (1957), and Deirmendjian (1969).

4.1 The scattered field
The scattered far field in spherical coordinates for a unit-amplitude incident field (where the
time variation exp(-iωt) has been omitted) is given by

Esϑ =
eikr

−ikr
cosϕ ⋅ S2(cosϑ )

Esϕ =
eikr

ikr
sinϕ ⋅ S1(cosϑ )

(4.1)

with the scattering amplitudes S1 and S2  (S3 = S4 =0)

S1(cosϑ ) =
2n +1

n(n +1)
(anπ n + bnτ n )

n=1

∞

∑ ;

S2(cosϑ ) =
2n +1

n(n +1)
(anτ n + bnπ n )

n=1

∞

∑
(4.2)

As described in Chapter 2, Esϑ  is the scattered far-field component in the scattering plane,
defined by the incident and scattered directions, and Esϕ is the orthogonal component. The
angle ϕ is the angle between the incident electric field and the scattering plane. The
functions πn and τn describe the angular scattering patterns of the spherical harmonics used
to describe S1 and S2 and follow from the recurrence relations

π n =
2n −1
n −1

cosϑ ⋅ π n−1 −
n

n −1
π n−2; τ n = n cosϑ ⋅ π n − (n +1)π n−1 (4.3)

starting with
π 0 = 0; π1 =1; π 2 = 3cosϑ ; τ 0 = 0; τ1 = cosϑ ; τ 2 = 3cos(2ϑ ) (4.4)

4.2 Mie Coefficients
The key parameters for Mie calculations are the Mie Coefficients an and bn to compute the
amplitudes of the scattered field, and cn and dn for the internal field, respectively. The
coefficients are determined by the boundary conditions of the fields at the sphere surface,
and they are given in BH (1983) on p.100. The coefficients of the scattered electrical field
are:

)]'()[()]'()[(
)]'()[()]'()[(

)]'()[()]'()[(
)]'()[()]'()[(

)1()1(
1

1

)1(
1

)1(2
1

2

mxmxjxhxxhmxj
mxmxjxjxxjmxjb

mxmxjxhxxhmxjm
mxmxjxjxxjmxjma

nnnn

nnnn
n

nnnn

nnnn
n

µµ
µµ

µµ
µµ

−
−

=

−
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(4.5)

where prime means derivative with respect to the argument; similar expressions exist for the
coefficients cn and dn of the internal field (see below). The Index n runs from 1 to ∞, but the
infinite series occurring in Mie formulas can be truncated at a maximum, nmax; for this number
BH (1983) proposed
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24 3/1
max ++= xxn (4.6)

and this value is used here as well. The size parameter is given by x=ka, a is the radius of the
sphere, and k=2π/λ is the wave number, λ the wavelength in the ambient medium,
m=(ε1µ1)1/2/(εµ)1/2 is the refractive index with respect to the ambient medium, ε1 and µ1 are the
permittivity and permeability of the sphere and ε and µ are the permittivity and permeability of
the ambient medium. The functions jn(z) and yn(z), and )()1( zhn =jn(z)+iyn(z), are spherical
Bessel functions of order n of the arguments, z= x or mx, respectively. The derivatives follow
from the spherical Bessel functions themselves, namely

)()()]'([);()()]'([ )1()1(
1

)1(
1 znhzzhzzhznjzzjzzj nnnnnn −=−= −− (4.7)

Relationships exist between Bessel and spherical Bessel functions:

)(
2

)( 5.0 zJ
z

zj nn +=
π (4.8)

)(
2

)( 5.0 zY
z

zy nn +=
π (4.9)

Here, Jν and Yν are Bessel functions of the first and second kind; for n=0 and 1 the
spherical Bessel functions are given (BH, p. 87) by

zzzzzyzzzy

zzzzzjzzzj
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−−=−=

−==
(4.10)

and the recurrence formula can be used to obtain higher orders

)(12)()( 11 zf
z

nzfzf nnn
+

=+ +− (4.11)

where fn is any of the functions jn and yn. Power-series expansions for small arguments of jn
and yn are given on p. 130 of BH. The spherical Hankel Functions are linear combinations
of jn and yn. Here, the first type is required

)()()()1( ziyzjzh nnn += (4.12)

The related Riccati-Bessel Functions will also be used:
)()();()();()( )1( zzhzzzyzzzjz nnnnnn =−== ξχψ (4.13)

By proper transformation of (4.5) we get expressions that are more suitable for numerical
computations; at the same time, the most delicate functions, ψn(mx)=mx⋅jn(mx), and their
derivatives are eliminated in the equations for the scattered field (Mie_ab and Mie2_ab). The
function ψn(mx) and its derivative diverge for lossy media, and the effect is especially strong
for metals. On the other hand, the logarithmic derivative Dn of ψn

)(
)]'([

)(
)('

mxjmx
mxjmx

mx
mxD
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n

n

n
n ⋅

⋅
==

ψ
ψ (4.14)

remains finite except for x→0. The function Dn(z) with the complex argument z=mx is
computed as described in BH in Section 4.8, by downward recurrence

znzDz
nzD

n
n /)(

1)(1 +
−=− (4.15)

starting at n=nstart=round(max(nmax,abs(z))+16), by using Dnstart=0, and ending at n=2. The
values of D1 to Dnmax are used by the (user-defined) MATLAB Functions Mie(m, x) for
µ1=µ and Mie2(eps1,mu1,x) for µ1≠µ, i.e. magnetic spheres. Dividing nominator and
denominator of the expression for an in (4.5) by ψn(mx)=mx⋅jn(mx) we get
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an =
µm[xjn (x)]'−µ1xjn (x)Dn (mx)

µm[xhn
(1)(x)]'−µ1xhn

(1)(x)Dn (mx)
=

ψn '(x) −ψn (x)Dn (mx)µ1 /(µm)
ξn '(x) −ξn (x)Dn (mx)µ1 /(µm)

=
Dn (mx)µ1 /(µm) + n / x[ ]ψn (x) −ψn−1(x)
Dn (mx)µ1 /(µm) + n / x[ ]ξn (x) −ξn−1(x)

=
Dn (mx)z1 + n / x[ ]ψn (x) −ψn−1(x)
Dn (mx)z1 + n / x[ ]ξn (x) −ξn−1(x)

(4.16)

Correspondingly, using the same transformation, we get for bn

bn =
Dn (mx) /z1 + n / x[ ]ψn (x) −ψn−1(x)
Dn (mx) /z1 + n / x[ ]ξn (x) −ξn−1(x)

(4.17)

The impedance and refractive-index ratios z1 and m, respectively, between inside and out-
side of the sphere are given by

εµ
εµ

µ
µ

/
/ 111

1 ==
m

z ;  
µε

εµ 11=m (4.18)

The coefficients of the internal field, including magnetic effects, are given by
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Note that the function jn(mx) and its derivative cannot be eliminated in (4.19). However, as
they appear in the denominator only, their divergence just leads to diminishing values of cn
and dn. The computation of the functions with the real argument x is done by directly calling
the MATLAB built-in Bessel Functions.

Mie Coefficients for coated spheres
MATLAB Functions: Miecoated_abopt(m1, m2, x, y) produce an and bn, for n=1 to nmax for Option opt=1, 2, 3.
Mie Coefficients an and bn of coated spheres can be used in the same way as those for
homogeneous spheres (BH, Section 8.1) to compute cross sections and scattering diagrams.
Their model assumes non-magnetic materials. The sphere has an inner (core) radius a
with size parameter x = ka  (k is the wave number in the ambient medium) and m1 is the
inner-medium refractive index relative to the ambient medium, an outer (coating) radius b
with relative refractive index m2, and size parameter y = kb .
One form (Option 1) used to compute the Mie Coefficients of coated spheres is the following
(as presented in Appendix B of BH, p. 483):
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The computation of these coefficients can cause problems for certain combinations of the
parameters (m1, m2, x, y) because of the diverging nature of some of the functions used
(see e.g. Figures in the Appendix of the report Mätzler 2002b and the discussion in Appendix
B of BH). Therefore three different options are available for tests and comparisons. Under
good conditions, the results of all options are the same. Problems are indicated if the results



34

differ noticeably or if NaN values are returned. Option 1 uses the computation as formulated
above, and the recurrence relation (4.15) for Dn. Careful treatment of diverging functions (e.g.
avoiding direct products of them) is applied. Option 2 uses the formulation on p. 183 of BH.
The option is selected by the Option Parameter, opt, in MATLAB Function Miecoated (see
below). Standard is opt=1.

4.3 Mie Efficiencies
MATLAB functions:
Mie(m, x) computes Qext, Qsca, Qabs, Qb, g=<costeta>, for non-magnetic spheres
Mie2(eps1, mu1, x) computes Qext, Qsca, Qabs, Qb, <costeta>, for magnetic spheres
Miecoated(m1,m2,x,y,opt) computes Qext, Qsca, Qabs, Qb, <costeta>, for non-magnetic, coated spheres for size

parameters x  and y, of core and coating, respectively, Option (opt=1,2,3).
Mie_xscan(m, nsteps, dx) and Mie2_xscan(eps1, mu1, nsteps, dx) are used to plot the efficiencies versus size

parameter x in a number (nsteps) of steps with increment dx from x=0 to x=nsteps⋅dx.
Miecoated_iscan(m1,m2,y,nsteps), where i=w, wr, pr are used to plot the efficiencies (for given y) versus

volumetric fraction w of the coating, fractional thickness wr and pr of core and coating, respectively, and
Option for Miecoated is opt=1.

The efficiencies Qi for the interaction of radiation with a sphere are cross sections σi

normalised to the geometrical particle cross section, σg=πa2, (σg=πb2, in case of coated
spheres), where i stands for extinction (i=e), absorption (i=a), scattering (i=s), backscattering
(i=b), and radiation pressure (i=pr), thus

g

i
iQ

σ
σ

= (4.21)

Qs =
2
x 2 (2n +1)( an

2 + bn
2)

n=1

∞

∑ (4.22)

Qe =
2
x 2 (2n +1)Re(an + bn )

n=1

∞

∑ (4.23)

and Qa follows from the difference of (4.23) and (4.22). All infinite series can be truncated
after nmax terms. Furthermore, the asymmetry parameter g= cosϑ  indicates the average
cosine of the scattering angle ϑ  with respect to power; it is used e.g. in Two-Stream
Models (Meador and Weaver, 1980), and it is related to the efficiency Qpr of radiation
pressure:

Qpr = Qe − Qs cosϑ (4.24)

Qs cosϑ =
4
x 2

n(n + 2)
n +1
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∞

∑ bnbn +1
* ) +
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n(n +1)

Re(anbn
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∑
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 

Finally, the backscattering efficiency Qb, applicable to monostatic radar, is given by
2

1
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Q (4.25)

4.4 The internal field
The internal field E1 for an incident field with unit amplitude is given by

E1 =
2n +1

n(n +1)
cnMo1n

(1) − dnNe1n
(1)( )

n=1

∞

∑ (4.26)



35

where the vector-wave harmonic fields are given in spherical (r,θ=ϑ ,φ) coordinates by
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and the coordinate system is defined as for the scattered field. The vector-wave functions N
and M are orthogonal with respect to integration over directions. Furthermore for different
values of n, the N functions are orthogonal, too, and the same is true for the M functions.

4.5 Computation of Qa, based on the internal fields
MATLAB functions:
Mie_Esquare(m, x, nj), Mie2_Esquare(eps1, mu1, x, nj) to compute the absolute-squared electrical field inside

the sphere (for nj values of kr from 0 to x)
Mie_abs(m, x), Mie2_abs(eps1, mu1, x) to compute the absorption coefficient, based on Ohmic losses (and

including magnetic losses in case of Mie2_abs)

Dielectric losses only
The absorption cross section of a particle with dielectric (i.e. Ohmic) losses is given by
σ a = kε" E1

2

V
∫ dV  where ε” is the imaginary part of the relative dielectric constant of the

particle (here with respect to the ambient medium). Thanks to the orthogonality of spherical
vector-wave functions, this integral becomes in spherical coordinates

σ abs = kε"π d(cosθ) r2dr cn
2(mθ + mφ ) + dn

2(nr + nθ + nφ )( )
0

a

∫
−1

+1

∫
n=1

∞

∑ (4.28)

The integration over azimuth φ has already been performed. The functions in the integrand
are absolute-square values of the series terms of the components of the vector-waves
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Here z=mrk, and gn stands for
2
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For the integrals over cosθ, analytic solutions can be obtained. First, from BH we find
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π n
2(cosθ) + τ n

2(cosθ)( )d(cosθ)
−1

1

∫ =
2n2(n +1)2

2n +1
(4.31)

and second, from (4.46) in BH and Equation 8.14.13 of Abramowitz and Stegun (1965), we
get

sin2 θ ⋅ π n
2(cosθ)( )d(cosθ)

−1

1

∫ = Pn
1(cosθ)( )2

d(cosθ)
−1

1

∫ =
2(n +1)
2n +1

(4.32)

leading to the two parts of the angular integral in (4.28)

mn = mθ + mφ( )d(cosθ)
−1

1

∫ = 2(2n +1) jn (z) 2 (4.33)
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Now, the absorption cross section follows from integration over the radial distance r inside
the sphere up to the sphere radius a:

σ a = kε"π mn cn
2 + nn dn

2( )⋅ r2dr
0

a

∫
n=1

∞

∑ (4.35)

The integrand contains the radial dependence of the absolute-square electric field
2E averaged over spherical shells (all θ and φ, constant r):

E 2 =
1
4

mn cn
2 + nn dn

2( )
n=1

∞

∑ (4.36)

and in terms of this quantity, the absorption efficiency becomes

Qa =
4ε"
x 2 E 2 x '2 dx'

0

x

∫ (4.37)

where x’=rk=z/m. Note that (4.36) is dimensionless because of the unit-amplitude incident
field; In case of Rayleigh scattering (x<<1) the internal field is constant, and the

corresponding squared-field ratio (4.34) is given by 22 2

9

+m
. This quantity can be used to

test the accuracy of the function, mie_Esquare, for small size parameters. In addition,
Equation (4.37) or (4.38) can be used to test the accuracy of the computation of Qa from the
difference, Qe –Qs.

Dielectric and magnetic losses
For spheres including magnetic losses, the absorption efficiency also includes a magnetic
current, the equivalent term due to the imaginary part µ”=imag(µ1/µ) of the magnetic perme-
ability. By duality (Kong, 1986), the electrical field E has to be replaced by the magnetic field
H, thus

∫=
x

abs dxx
x

Q
0

22
2 ''"4 Eε + ∫

x

dxx
x 0

22
2 ''"4 Hµ (4.38)

and 2H  is obtained by interchanging µ1/µ=mu1 and ε1/ε=eps1, i.e. calling

Mie2_Esquare(mu1, eps1, x, nj).
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4.6 Examples and tests

The situation of x=1, m=1000+1000i
Metals are characterised by large imaginary permittivity; the chosen value is an example of a
metal-like sphere The execution of the command line
>> m =1000 + 1000i; x = 1; mie_ab(m,x)

returns the vectors [an; bn] for n=1 to nmax=7:
   0.2926 - 0.4544i   0.0009 - 0.0304i   0.0000 - 0.0008i   0.0000 - 0.0000i
   0.0455 + 0.2077i   0.0003 + 0.0172i   0.0000 + 0.0005i   0.0000 + 0.0000i
   0.0000 - 0.0000i   0.0000 - 0.0000i   0.0000 - 0.0000i
   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i

whereas the function mie_cd(m,x) returns zeros.

Magnetic sphere with x=2, eps1=2+i, mu1=0.8+0.1i
The command line
>> eps1=2+1i; mu1=0.8+0.1i; x=2; mie2_ab(eps1,mu1,2)
leads to the Mie Coefficients [an; bn] for n=1 to nmax=9:
   0.3745 - 0.1871i   0.1761 - 0.1301i   0.0178 - 0.0237i   0.0010 - 0.0016i
   0.3751 + 0.0646i   0.0748 + 0.0294i   0.0068 + 0.0044i   0.0004 + 0.0003i
   0.0000 - 0.0001i   0.0000 - 0.0000i   0.0000 - 0.0000i   0.0000 - 0.0000i
   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i
   0.0000 - 0.0000i
   0.0000 + 0.0000i

whereas the command line
>>mie2(eps1,mu1,2)
returns the Mie Efficiencies Qe, Qs, Qa, Qb, g=<costeta> and Qb/Qs
 =   1.8443, 0.6195, 1.2248, 0.0525, 0.6445, 0.0847

and the command line
>>mie2_abs(eps1,mu1,2)
gives the absorption efficiency by the alternative way

Qabse =    0.9630
Qabsm =   0.2618
sum =  1.2248

Here Qabse is the absorption efficiency due to the electrical field (Ohmic losses), Qabsm due
to the magnetic field, and sum is the sum, i.e. the total absorption efficiency, in agreement
with the third number of the result of Mie2(eps1, mu1, x), s. above.

Mie Efficiencies are plotted versus x  (0≤x≤5) by Mie2_xscan(eps1, mu1, 501, 0.01) in Figure
4.1a. To plot the angular dependence of the scattered power in the two polarisations, the
function Mie2_tetascan(eps1,mu1,x,201), for x=0.2, is used to provide Figure 4.1b.



38

Figure 4.1a: Mie
Efficiencies versus
size parameter for
a sphere with ε=
2+i, µ=0.8+0.1i.

mie2_xscan(eps1, mu1, 501, 0.01)

Figure 4.1b: Mie
angular pattern for
a sphere where S1
is shown in the
upper and S2 in
the lower half
circle, with x=0.2,
ε= 2+i,
µ=0.8+0.1i. Note
that here
backscattering is
stronger than
forward scattering,
in agreement with
negative values of
< cosϑ > at x=0.2
in upper figure.

mie2_tetascan(eps1,mu1,x,201), for x=0.2
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Coated sphere
Typical examples are melting ice particles (hail). Also the opposite, freezing rain drops may
occur. For water we assume a refractive index mw=4+2i, and for ice we assume a real value
mi=1.8 (approximate values at 40 GHz, 0°C). Figure 4.2 shows the result of the Mie
efficiencies. Note the difference in scale of the x axis, representing the relative thickness of
the coating.

Figure 4.2a:
Mie Efficiencies

versus relative
thickness
(logarithmic
scale) of coating
for a sphere
representative
for a melting
graupel, i.e. an
ice core with a
water coating, at
a frequency near
40 GHz, size
parameter
y = kb =1.8 .

Figure 4.2b:
Mie Efficiencies

versus relative
thickness of
coating for a
freezing
raindrop, i.e. a
water core with
an ice coating, at
a frequency near
40 GHz size
parameter
y = kb =1.8 .

Absorption is a result of the water losses only. Whereas a thin water coating already has a
significant influence on absorption (Fig. 4.2a), a small water core (Fig. 4.2b) seems to be well
shielded from electric fields, and thusQa → 0. Scattering and backscattering behave quite
differently. In addition the behaviour depends on all variables, and especially on y. Try other
examples, using the MATLAB function:  miecoated_wrscan(m1,m2,y,nsteps).
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The absolute-square internal E field is plotted versus the radial distance for x=5 by calling
Mie2_Esquare(eps1,mu1,x,201). Examples for the electric field variation are shown in Figure
4.3 for two situations. In the first example the field is concentrated near the sphere surface
due to the limited field penetration into the lossy material. The second example is typical for
the strong field heterogeneity in large, low-loss spheres.

Figure 4.3a: Radial variation of
the squared electric field for a
dielectric sphere with      ε=
2+i, µ=0.8+0.1i, x=5. The
high losses lead to a
decreasing field with
increasing depth from the
sphere surface.

Figure 4.3b: Radial variation of
the squared electric field for a
dielectric sphere with
m = ε =2+0.1i, x=10. For
x→0, the values converge to
the Rayleigh scattering result
of Equation (3.2) giving a
constant value of 0.250.

4.7 Extinction Paradox
See also van de Hulst (1957, p. 107). The Extinction Paradox follows from the fact that for
large scatterers, here for spheres with x>>1, the extinction efficiency approaches Qe = 2 . As
an example let us compute mie(m=3+0.001i,x=50'000) to find
(Qe, Qs, Qa, Qb, g= cosϑ , Qb/Qs)= (2.0015, 1.2775, 0.7240, 0.2500, 0.7998, 0.1957).
It means that the amount of radiative power lost from the incident radiation is twice as much
as geometrically intercepted by the scatterer. The result is in contradiction to geometrical
optics where we would expect Qe =1. Geometrical optics should be valid for sufficiently large
spheres. How can this paradox be explained?
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In short, both results can be true. The selection about which one is valid depends on the type
of experiment. As an example, the shadow on the following image

corresponds to the size of the mountain, Niesen, withQe =1, but a dust particle or a meteorite
in space between a star and a telescope will screen twice this light (Qe = 2 ). Let us recall that
in the assumption made (by choosing the far field R >> D2 /λ  as the observation position) all
affected radiation, including scattering at small ϑ , is counted as removed, and that the
propagating wave is a plane wave without any shadow (smeared by diffraction). The
assumption may be valid in the second example but not in the first one. Even in the second
one we may have to choose an effective value Qe =1 (or Qe

* =1, see below), if the telescope
cannot distinguish the direct star light from the halo of the diffracted radiation.
Now we are ready to understand the result of Qe = 2 : A first contribution of 1 to Qe  results
from radiation intercepted by the large particle due to absorption and scattering. Besides that
we have diffraction, forming an angular pattern that is identical with the diffraction through a
hole of area σg by Babinet's Principle (Kong, 1985), giving the same contribution again. The
total radiation removed from the wave corresponds to a total cross section 2σg, i.e. Qe = 2 .

4.8 Lorenz-Mie scattering without diffraction
The diffraction peak can be a disturbing feature. Scattering in the forward direction does not
appear as a loss if ϑ < than the resolution of the observing instrument. Also radiative transfer
models may be unable to handle strongly peaked scattering functions. There is a need to
separate the diffraction peak from the rest of the scattering function. We will discuss the
situation for spheres (from Mätzler, 2004).
The scattered power is characterised by components SR and SL with polarisation
perpendiculaR and paralleL to the scattering plane.

2

2
1

x
S

SR π
= = Qbi,R

4π
  and  2

2
2

x
S

SL π
= = Qbi,L

4π
(4.39)

With this normalisation, the integration of the sum S=SL+SR over directions gives Qs. For
unpolarised illumination, such as sunlight, the scattered light becomes polarised with a
degree ρ of linear polarisation:

LR

LR

SS
SS

+
−

=ρ (4.40)
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Diffraction and its subtraction from the scattering signal
Parts of the scattering functions S1 and S2 are due to diffraction of the electromagnetic wave
at the projected area of the sphere.  The scalar diffraction signal representative for a
planar, circular pattern of radius a , size parameter x = ka  is given by  (BH, Section 4.4.3)

θ
θθ

sin
)sin(

2
cos1 12

x
xJxSd ⋅

+
=  (4.41)

where θ is the scattering angle. The scattered fields without diffraction become
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ikr

sd

ikr

s SS
ikr

eESS
ikr
eE −⋅
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=−⋅= φφ θφ (4.41)

Thus the Si (i=1,2) are to be replaced by the differences dii SSS −=0  leading to the scattered
power 000 RL SSS +=  of the scattering patterns without diffraction. The subtraction is
performed at the field level (an alternative would be to subtract the signals at the power level,
however, with a poorer quality of the peak removal due to the phase correlation near the
forward direction).
The MATLAB Function mie_tetascanall(m,x,nsteps,nsmooth,type) computes
the scattering amplitudes and plots their intensities. An example of a low-loss dielectric with
m=1.44+10-5i is shown below. Mie Efficiencies computed with mie(m,x), the diffraction
efficiency Qd according to Equation (4.46), and the asymmetry parameter g are given.

x Qe Qs Qa Qb Qd g
1 0.16711 0.16708 0.00003 0.14714 - 0.19335
2 1.36720 1.36711 0.00009 0.17569 - 0.64778
4 3.85533 3.85515 0.00019 0.42531 - 0.78837

10 2.25693 2.25635 0.00059 2.96921 0.52239 0.61738
20 2.62136 2.62050 0.00086 1.79805 1.13990 0.80666
40 2.32944 2.32771 0.00173 6.62629 1.05018 0.80999

100 2.10636 2.10239 0.00397 2.00493 1.01875 0.82599
200 2.00908 2.00193 0.00714 0.12152 0.98010 0.84008
400 2.03543 2.02080 0.01463 9.30592 1.00068 0.84094

1000 2.02624 1.99101 0.03523 21.9324 1.00279 0.84929
2000 2.00434 1.93629 0.06805 13.2710 0.99472 0.85376
4000 2.01376 1.88251 0.13124 5.05702 1.00470 0.86224

10000 2.00597 1.71366 0.29129 8.97102 1.00081 0.87975

Table 4.2: Mie
Efficiencies Qj for
extinction (j=e),
scattering (j=s),
absorption (j=a),
backscattering (j=b)
and diffraction (j=d),
and asymmetry
parameter g for
m=1.44+10-5i, x=1 to
104.

Figure 4.4: Angular scattering diagram in logarithmic (dB) scale with (left) and without (right) diffraction peak for
m=1.44+10-5i, x=400, S1 upper, S2 lower semicircle. Values normalised at the origin (0dB) to minimum.
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Figure 4.5: S (uppermost curve), S0 (lowest curve), both in logarithmic scale, and degree of linear polarisation
(middle curve) for m=1.44+10-5i, x=400. Note glory (180°), first (151°) and second (105°) rainbow.
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Figures 4.4 and 4.5 show angular plots obtained with mie_tetascanall for m=1.44+10-5i,
x=400, nsteps=10000, nsmooth=30, type='log'. Note the high linear polarisation near the first
and second rainbow. The numerical results returned are (gi and g0i to be explained later):
      S: [10000x9 double],  Q: [2.0354 2.0208 0.0146 9.3059 1.0007 0.8409]
     gi: [0.8410 0.7625 0.6214 0.5806 0.5261 0.5177 0.5102 0.4994 0.5010 0.4934]
    g0i: [0.6858 0.5318 0.2544 0.1749 0.0675 0.0500 0.0338 0.0107 0.0130 -0.0019]

Beam efficiency and effective scattering efficiency
The beam efficiency ηb is a quantity known from antenna theory to describe the fraction of
the radiation contained in the main lobe. In analogy, here ηb can be defined as the fraction of
radiation scattered in a given angular range, such as the forward peak. This quantity
depends on the scattering angle θlim at the upper limit of integration

∫ ⋅=
lim

0
lim

θ

θθθθη dS
Qsca

b sin)(1)( ;    ∫ ⋅=
lim

0
lim

θ

θθθθη dS
Qsca

b sin)(1)( 00 (4.42)

The normalisation of S according to Equation (4.39) requires ηb =1 for θlim =π, which was
used to test the numerical integration. An example with θlim ranging from very small values to
π is shown in Figure 4.7 for x=400. The respective directional integration over S0 gives ηb0;
the result is also shown in Figure 4.7. These values are smaller because the diffraction peak
is missing, and ηb0(θlim) increases slowly with θlim, mostly in parallel to ηb beyond the
diffraction angles. The difference

ηbd =ηb - ηb0 (4.43)
shown as dotted line in Figure 4.6, corresponds to the beam efficiency of the diffraction
signal. The dotted curve reaches constant values already for small angles, i.e. about 2°. The
width of the diffraction peak is on the order of 180°/x. With increasing x, ηbd(θlim) approaches
a step function in the semi-logarithmic representation of the Figure 4.6, thus indicating a
clear distinction between diffraction at small θlim and more or less diffuse scattering above. A
small, but distinct backward peak is also visible for ηb and ηb0 at the right-hand side of Figure
4.6 as a manifestation of the glory effect (van de Hulst, 1957).

Figure 4.6: Beam efficiencies ηb

(solid line) and ηb0 (dashed)
and their difference (dotted) of
a dielectric sphere versus θlim
for size parameter x=400,
refractive index m=1.44+10-5i.
Absorption is almost negligible
(Table 4.2) → maxima of the
dashed and dotted lines are
about equal and near 0.5.

The beam efficiencies can be used to estimate the effective scattering Qs* and extinction Qe*
efficiencies (the absorption efficiency Qa being unaffected) from the original values Qs and Qe
= Qa + Qs where only the effect of scattering without diffraction is considered:
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Qs
* = Qs − Qsηbd ; Qe

* = Qe − Qsηbd (4.44)

Due to the step-like behaviour of ηbd, it is possible to avoid its dependence on θlim, at least for
sufficiently large spheres, by choosing the value  θlim =π

)(1)()( 00 πηπηπηη bbbbd −=−= (4.45)

The diffraction efficiency Qd is related to ηbd  by
Qd = Qsηbd = Qs − Qs

*
 ;    x >>1 (4.46)

This quantity was computed from (4.45) by numerical integration according to (4.42). The
results shown in Table 4.2 indicate that for sufficiently large x, Qd is very close to 1. This
means that ηbd ≅ 1/Qs and

Qs
* = Qs − Qd ≅ Qs −1 ;  Qe

* = Qe − Qd ≅ Qe −1   (4.47)

The result is not limited to the special value of m, but is generally valid for sufficiently large x,
because the diffraction signal is independent of the physical properties of the sphere. If
extinction is understood as the sum of losses by absorption, scattering and diffraction, the
extinction paradox is resolved. After subtraction of the diffraction loss, the remaining
extinction efficiency approaches Qe

* → Qe −1→1 for x→∞.
Another example is presented in Table 4.3 for constant x=200 and variable m’, covering the
region around m’ = 2 where the first rainbow merges with the backscatter peak, thus leading
to enhanced backscatter; neither g nor Qd seem to be strongly affected, all situations
showing Qd ≅ 1.

m’ Qe Qs Qa Qb Qd g

1.2 2.099229 1.618585 0.480644 0.56835 1.05774 0.94924
1.3 2.041250 1.551503 0.489747 0.16558 0.97624 0.92507
1.4 2.049675 1.560148 0.489526 0.52057 0.99484 0.90501
1.5 2.075441 1.577244 0.498196 1.11266 1.03103 0.88640
1.6 2.041354 1.544187 0.497167 1.07622 0.97714 0.86441
1.7 2.062153 1.562900 0.499253 15.55968 1.00321 0.85068
1.8 2.067160 1.570164 0.496996 75.28368 1.01404 0.83251
1.9 2.053177 1.544784 0.508393 159.6981 0.99843 0.81382
2.0 2.070283 1.582501 0.487782 41.31594 1.01976 0.80902
2.1 2.062575 1.571687 0.490888 9.49542 1.00679 0.79171
2.2 2.053084 1.565909 0.487174 1.72237 1.00382 0.77902
2.3 2.080204 1.595842 0.484362 0.73189 1.02857 0.77294
2.4 2.032339 1.551666 0.480673 2.54836 0.97723 0.75444
2.5 2.057014 1.579909 0.477104 1.94581 0.99842 0.74733

Table 4.3: Mie Efficiencies Qj for extinction (j=e), scattering (j=s), absorption (j=a), backscattering (j=b) and
diffraction (j=d), and asymmetry parameters g for x=200, m=m’+0.001i, where m’=1.2 to 2.5.



46

4.9 Comparison of Mie results with approximations

Mie and Rayleigh

MATLAB: top: mierayleigxscan2(m=2+4i, nsteps=100, dx=0.1, xmax=1), bottom: mierayleigxscan1

Figure 4.7: Extinction (upper left) and backscatter (upper right), absorption (lower left) efficiency and cosϑ
(lower right) versus x of a dielectric sphere with m=4+2i, comparison between Rayleigh and Mie scattering.
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Whereas Rayleigh backscattering is quite accurate up to x=1, absorption often requires x<0.1.

Mie solution with limited number of spherical harmonics (nmax fixed)
MATLAB: miexscannmax(m, nsteps, dx, nmax)

Figure 4.8: Extinction (upper left) and backscatter (upper right), absorption (lower left) efficiency and cosϑ  (lower
right) versus x of a dielectric sphere with m=1.7+0.03i, comparison of full Mie scattering with the solution for
nmax=2.
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Mie Theory and Geometrical Optics
Angular behaviour of scattering, using the MATLAB function, tetascancompare1(m, x,
nsteps, nsmooth, ymin, ymax):

Figure 4.9: Lossy sphere: m=4+i, x=100 (above), transparent sphere m=1.44+10-5i, x=1000 (below)
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A comparison of the dependence on size parameter is shown in the following figures,
computed with the MATLAB Function, mie2go2xscan(ε, µ, nsteps, xmin, xmax). Note that the
x dependence in geometrical optics is only due to the penetration depth 1/γ a  of radiation in
the sphere. For large spheres, limiting values are found for Qa  and Qs.

Figure 4.10: x variation of absorption (left) and scattering (right) efficiencies for dielectric-magnetic spheres
according to Mie Theory (solid lines) and geometrical optics (dashed). GO+1 (dash-dotted line) means a
correction (+1) of Qs, taking into account the effect of diffraction.
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Mie Theory and Born Approximation
MATLAB: tetascancompare2(m, x, nsteps, ymin, ymax)

Figure 4.11: Comparison of Mie angular scattering with the Born Approximation for m=1.1+0.03i, x=4.

The results appear to agree better in the forward than in the backward hemisphere. The
agreement improves as m gets closer to 1.

Exercise
Compare the Mie scattering and absorption efficiencies and <cosϑ > with results of the Born
Approximation. Plot the results as in Figures 4.7, 4.8 and 4.10 versus size parameter (x from
0.01 to 100) for different m (e.g. 1.05, 1.05+0.05i, 1.5+0.01i, 2+i).

Realisation with MATLAB Function Mie_Born(m) by M. Schneebeli. Results in the following
figure.
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Figure 4.12: Comparison of Mie results with those of the Born Approximation for a refractive index of 1.1+0.01i.

5 On Scattering and Absorption by Non-Spherical Particles
Scattering problems of electromagnetic waves can be solved exactly if the boundary-value
problem of the fields at the particle surface can be expressed in simple terms. This is
possible if there exists a set of orthogonal vector-wave functions for the geometry in
question. Apart from spherical particles this applies to plane interfaces, leading to the Fresnel
Equations. Also for a few other particle shapes (e.g. ellipsoids) vector-wave functions have
been constructed (Zhou, 1994).
However, most progress today is based on numerical methods. Unfortunately, these topics
are beyond the coverage of this lecture. Interested readers may consult the literature, e.g.
Mishchenko et al. (2000), Tsang et al. (2000), Warnick (2005).
Among the numerical methods are also relative simple, approximate ones, e.g. ray tracing
methods using geometrical optics, or the WKB method (see Ishimaru, 1978).
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6 Scattering and Absorption by a Cloud of Particles

6.1 The particle cloud
So far, scattering and absorption has been limited to the interaction with a single particle of
volume Vs.  Most often, radiation interacts with a large number Nv of particles in a given
volume V. The set of particles describes a cloud with a particle number density

N =
NV

V
(6.1)

and the volume fraction f of particles in V is simply
f = NVs (6.2)

We will consider effects of radiative transfer in a small volume element ∆V , but still large
enough to contain a representative number ∆N ≅ N∆V >>1 of particles.

Figure 6.1: Particle cloud with volume
element ∆V .

6.2 Size distributions
Clouds may consist of particles with different size, shape and orientation, and also their
refractive properties may be different. A simplification is an isotropically oriented set of
particles with the same refractive index, but allowing for different particle size. Since spheres
are isotropic, their orientation is indifferent.  We will characterise a given particle by a size or
diameter D. The mean number of particles per unit volume in the diameter interval (D,
D+dD) is given by N(D)dD. A number of mathematical functions is used to describe the size
distribution N(D) to fit the functions found empirically from observations. The total number
density then is

N = N(D)dD
0

∞∫ (6.3)

The integral is the zeroth moment of the distribution. More generally we define the mth

moment by

mn = N(D)DndD
0

∞∫ (6.4)

The mean diameter is the first moment
Dmean = ∆Vm1 = ∆V N(D)DdD

0

∞∫ (6.5)

The mean geometrical cross section is proportional to m2, and the mean volume is
proportional to m3. Further moments are used to describe other mean physical cloud
properties.
Note than in the more general case of particles with anisotropic orientation, the probability
distribution of the particle orientation has to be specified as well.

Modified Gamma Distribution
N(D) = N0D

α exp(−ΛD)  (6.6)

where N0, α,  Λ  are free parameters. The moments are given by
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where Γ() is the Gamma Function, and for an integer argument we have
 Γ(n + α +1) = (n + α)! (6.8)

A special case is the exponential distribution (α = 0) often used to describe the raindrop size.

Lognormal Distribution

N(D) =
NT

2π Dlnσ
exp −

ln2(D /Dg )
2ln2 σ

 

 
 

 

 
 (6.9)

This is again a 3-parameter function with moments
]ln5.0exp[ 22 σnDNm n

gTn = (6.10)

where NT is the total number density, Dg is a characteristic diameter, and σ describes the
relative width of the distribution.

6.3 Scattering and absorption by clouds
The mean scattering and absorption properties of clouds will be described by the properties
of single particles together with the distribution function. This is based on two assumptions:

1) the radiation homogeneously penetrates into the volume element ∆V , and
2) the superposition of radiation from different scattering centres is incoherent.

The behaviour was found to be true for scattering at a granular medium in the Born
Approximation, see Equation (3.34).
Note, however, that scattering of monochromatic radiation in a medium with multiple
scattering centres leads to speckle noise due to interference between different rays. The
incoherent superposition only gives the mean value of actual situations. Therefore averaging
procedures are needed in experiments to smear out the interference effects.

The absorption cross section of the volume element ∆V (Figure 6.1) is the sum of the
absorption cross sections of the particles in this volume. The mean value can be described
by the integral

σ a,mean = ∆V N(D)σ a (D)dD
0

∞∫  (6.11)

In the same way, the mean scattering cross section is given by the equivalent expression
σ s,mean = ∆V N(D)σ s(D)dD

0

∞∫  (6.12)

Also the extinction, mean bistatic scattering cross section and other additive quantities can
be described in this way. Volume densities of the mean cross sections are called coefficients.
Thus the absorption coefficient, scattering coefficient and extinction coefficient are

γ a =
σ a,mean

∆V
;  γ s =

σ s,mean

∆V
;  γ e =

σ e,mean

∆V
 (6.13)

or generally
γ i = N(D)σ i(D)dD

0

∞∫ ; where i=a, b, bi, d, e, s, ... (6.14)

Their dimension is area/volume, thus the MKS unit is 1/m. These are quantities used in
radiative transfer to be described in Part 2 of this lecture. Note also that they may depend on
polarisation of the incident radiation.

Exercise: Show that the absorption coefficient (6.11) in the Rayleigh Approximation for a
cloud of absorbing spheres in free space is identical to the result of the Maxwell-Garnett
formula (1.15) with (1.10) at low volume fraction (linear in f ).
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Part 2: Radiative Transfer

7 Introduction to Radiative Transfer
Radiative transfer describes how the radiation field changes from point to point and for
different directions under a given illumination or source distribution. The usual assumptions
are that the scenario is stationary and that different rays interact incoherently. Also Local
Thermodynamic Equilibrium (LTE) conditions are usually assumed. Deviations from these
assumptions may need special treatments.
To find a selected ray path on a macroscopic scale, geometrical optics is generally used.
Apart from Snell's Law, the Eikonal Equation is often used to find this path.
Radiative transfer concentrates on standard geometries such as plane-parallel media,
semi-infinite half-spaces with flat surfaces, or spherically-symmetric media, and in standard
situations a single source of illumination, such as a point source or a plane wave, are
considered.
Applications beyond the topic of this lecture include 3-dimensional scenes. For this purpose it
is necessary to use numerical methods, e.g. Monte Carlo simulations of the radiation field.

7.1 Radiance and related quantities

Radiance or specific intensity
The radiation field is described by a radiative intensity, called radiance, Iν , at a given
frequency ν  (or Iλ at a given wavelength λ ), polarisation, position and in a given direction
(Figure 7.1). This quantity is defined in Equation (7.1) by the infinitesimal radiative power dP
at the required polarisation within the frequency range (ν, ν + dν) crossing a given test area
dA in the given direction, defined by the unit vector  

) n (θ,φ ), within an infinitesimal solid angle
dΩ of spherical coordinates (θ,φ ) centred at position r . This power can be expressed as

  dP = Iν (r,) n (θ,φ)) ⋅ dν ⋅ dA ⋅ cosθ ⋅ dΩ (7.1)

Apart from the term, radiance, other terms are used as well: specific intensity, in German:
spektrale Strahlungsdichte. The term intensity is normally used for power per unit area,
which is not the same as Iν . The factor, cosθ , is used to relate the power to the projected
area as seen by the ray. With Equation (7.1) we are able to concentrate on the radiative
power of a light ray of interest. The selected radiation is called a pencil of radiation. If we
know Iν  at all positions and for all directions, the problem of radiative transfer is solved.

 x3                                                                dΩ

         θ

dA
                                                                         x2

               φ
x1

Figure 7.1: Geometrical situation used to
define the radiance. Position r is at the
origin of the coordinate system shown.
Cones of solid angle dΩ  of two limiting
beams within area element dA are
shown.

Spectral flux density
Integrating Equation (7.1) over all directions gives a new quantity, called spectral flux density
F, here F3, because the normal to dA is in direction of x3. More generally, for a given unit
vector  

) n 0  at position r, the spectral flux density is defined by Fν

  
Fν () n 0) = Iν (r,) n )) n ⋅ ) n 0

4 π
∫ dΩ (7.2)
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If the integration is limited to the forward hemisphere (  
) n ⋅  

) n 0>0) we call the result Fν + , and for
the backward hemisphere (  

) n ⋅  
) n 0<0), we call the integral Fν −:

  
Fν ±() n 0) = ± Iν (r,) n )) n ⋅ ) n 0

±2π
∫ dΩ (7.3)

The sign is such as to provide positive values, and we can write: Fν = Fν + − Fν − . Isotropic
radiation fields have Fν = 0 , and

Fν + = Fν − = πIν  (7.4)

because dΩ = dφ sinθdθ , and the integral dφ
0

2π∫ cosθ sinθdθ
0

π / 2∫ = 2π xdx = π
0

1∫ . This
result is the reason why some authors (e.g. Chandrasekhar) call the flux density πF  instead
of F . Then (7.4) changes to πFν + = πFν − = πIν .
Since   

) n 0  is arbitrary we can define the spectral flux density and the radiative flux density
of the radiation field at position r as the vectors

 
  
Fν = Iν (r,) n )) n  

4 π
∫ dΩ ,   and F = Fν dν

0

∞

∫ (7.5)

Mean intensity and spectral energy density

                  dV
     dΩ

      dA

                                                 θ
                               c⋅dt⋅cosθ

Figure 7.2: Volume dV of a ray passed in time dt where
c is the speed of light

Let us compute the spectral energy density in J/m3/Hz of the radiation field. According to
Figure 7.2 the energy of a given ray is dispersed in time dt  over volume dV = dAcosθ ⋅ cdt .
Then the energy density of this ray is

duν =
dU
dV

=
dPdt
dV

=
Iν cosθdΩdAdνdt

cdtdAcosθ
=

Iν

c
dΩdν (7.6)

The spectral energy density uν  is the integral over all directions

uν =
wν

c
;  where  wν = Iν dΩ

4 π
∫ ; and     u = uν dν

0

∞

∫ (7.7)

and c is the speed of light (more exactly, the group velocity) in the medium. The quantity wν
is the mean (spectral) intensity, and u is the total radiative energy density. For an
isotropic radiation field we have wν = 4πIν  and

uν =
4πIν

c
 (7.8)

Polarised quantities
The quantities defined in this section apply to any state of polarisation. Therefore the
radiance can be generalised to a vector whose elements are Stokes Parameters

Iν = (Iν1,Iν 2,Uν ,Vν )tr  (7.9)

and the total radiance is the sum, Iν = Iν1 + Iν 2. For all quantities defined above there are
respective quantities for polarised radiation. We will also use, in analogy to Iν1and Iν 2 , the
radiances IνU +,  IνU − of linear polarisation at +45° and -45°, and IνV +, IνV −  of left- and right-
handed circular polarisation. The total radiance is equivalently given by the sums,
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Iν = IνU + + IνU − = IνV + + IνV − , and the 3rd and 4th Stokes Parameters are given by
Uν = IνU + − IνU −and Vν = IνV + − IνV − .

7.2 Radiation in thermal equilibrium
Radiation in thermal equilibrium is characterised by a single temperature T. As we will see
later, a medium that emits this type of radiation is a black body, i.e. a medium without
reflection and without transmission. Since photons follow the Bose-Einstein statistics, the
radiance is given by the Planck function Bv

Iν(θ,φ) = Bν(T) = 
( )1)/exp(

2
2

3

−ν
ν

Tkhc
h

b
(7.10)

where h =6.6256⋅10-34Js Planck constant, kb = 1.3805⋅10-23J/K Boltzmann constant. The
radiance is isotropic and unpolarised: Iν = (Iν1 = Bν /2, Iν 2 = Bν /2, Uν = 0, Vν = 0)tr; thus the
spectral energy density (J/m3/Hz) is

uν = 4πBν

c
=

( )1)/exp(
8

3

3

−ν
νπ

Tkhc
h

b
(7.11)

Integration over frequency from 0 to ∞, for details see Ulaby et al. (1981), gives

u = 3

45

)(15
)(8

hc
Tkbπ (7.12)

and the power radiated by an area dA is (since Fν+= πIν =uνc/4)
dP = dA⋅u(T)⋅c/4 = dA⋅σsb⋅T4 (7.13)

where the Stefan-Boltzmann constant σsb is given by

σsb = 23

45

15
2

ch
kbπ = 5.67⋅10-8Wm-2K-4 (7.14)

For sufficiently low frequency (hν<<kbT) the Rayleigh-Jeans Approximation is applicable for
Bν(T), leading to a linear relationship with temperature:

Bν(T) ≅ 2

22
c
Tkb ν (7.15)

The linearity enables us to express the radiance by the temperature; and this temperature is
called brightness temperature Tb, even if the radiation is not from a region in full thermal
equilibrium. From (7.10) and (7.15) we have for T=Tb, and for the Stokes Vector form (7.9)

Tb =
c 2Iν

2kbν
2 ;     Tb = (Tb1,Tb 2,TbU ,TbV ) =

c 2Iν

kbν
2 (7.16)

Exercises:
1. Test the relative error of the Rayleigh-Jeans formula for frequencies given by ν=0.01kbT/h
and ν=0.1kbT/h, ν=kbT/h. How large are these frequencies and corresponding vacuum
wavelengths for T=3K, 300K, 6000K? Plot (log-log scale) the Planck spectra Bν  for these
temperatures and determine the maxima of the curves. Find a formula to express the
frequency of the maximum as a function of temperature (Wien displacement law).
2. Compare the radiative energy density u at 300K with the kinetic, internal energy density
uT = ρcvT of dry air at the same temperature, where the specific heat is 718J/kg/K and
ρ =1kg /m3. At which temperature would both be the same?
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7.3 Radiation in Local Thermodynamic Equilibrium: Kirchhoff's Law
If the medium, accessible by radiation, is not at a single temperature, the Planck radiation
law may still be valid in an adapted way found by Kirchhoff in 1860 before the Planck formula
was known. Kirchhoff's law relates emission and absorption of radiation in Local
Thermodynamic Equilibrium (LTE), meaning that the emission is governed by thermal
conditions as defined by a unique temperature at any given location. The space is assumed
to be divided into N volumes of temperatures Ti where i= 1 to N. The temperature inside each
volume is homogeneous. A receiver with a reciprocal, single-mode antenna is used to
measure this radiation. The received power must be a linear combination of the blackbody
radiances corresponding to the different temperatures.

PA ,p = AΩ ei,p
Bν (Ti)

2i=1

N

∑ (7.17a)

where A and Ω are the receiving aperture and solid angle. The factor ½ takes care of the fact
that a (single-mode) sensor is sensitive to one state of polarisation. If the power is expressed
in terms of the antenna temperature TA,p (Ulaby et al. 1981), representing the spectrally and
angularly averaged brightness temperature of the sensor antenna (at polarisation p) and
filter, the linear combination in the Rayleigh-Jeans approximation is simply

 TA ,p = ei,pTi
i=1

N

∑ (7.17b)

To determine the emissivities ei,p  (non-dimensional constants with i =1 to N, polarisation p),
the reciprocal condition is considered in which the radiometer is replaced by a stationary
transmitter with the same spectral and polarisation properties.
Let us define ai,p  as the fraction of the transmitted power absorbed in volume Vi. Then ai,p  is
the absorptivity of this volume for the given transmitter configuration. Energy conservation
requires that all radiation is absorbed somewhere which means that

ai,p =1
i=1

N

∑ (7.18)

Kirchhoff's law states that
ei,p = ai,p  (7.19)

for all i=1 to N, and for any polarisation. Then

TA ,p = ai,pTi
i=1

N

∑  ; PA ,p = AΩ ai,p
Bν (Ti)

2i=1

N

∑ (7.20)

Since (7.19) and (7.20) apply to any sensor (with any spectral properties, polarisation and
angular pattern), they also hold for an ideal monochromatic, pencil-beam radiometer, and
thus for the brightness temperature (in the Rayleigh-Jeans Approximation), or more generally
for the radiance:

Tb,p (ν ) = ai,p (ν )Ti
i=1

N

∑ ;  Iν ,p = ai,p (ν) Bν ,i

2i=1

N

∑ (7.21)

where ai,p (ν ) is the monochromatic absorptivity at any of the standard-polarisation states
( p =1, 2, U+,  U−,  V +,  V −)  of volume Vi for radiation propagating in the reciprocal
(opposite) direction of the radiation considered for emission. Thus the alternate Stokes
Parameters of thermal radiation at a given position r and in a given direction   

) n  are
   Iv (r,) n ) = Iν ,1,  Iν ,2,  Iν ,U + − Iν ,U −,  Iν ,V + − Iν ,V −( ) (7.22)

The complication with the differences is a consequence of the definition of Stokes
Parameters. The absorptivity is defined for a given radiance or power, but not for differences.
Also Kirchhoff's Law applies to radiating power, but not to differences. These have to be
constructed in the way shown in (7.22). Furthermore absorptivities ai≥ 0, obeying (7.18).
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An Example
Let us consider the situation of Figure 7.3, showing a night scene with parts of a tree, of the
moon, and of a cloud. A decomposition into N=8 objects at different temperatures is
proposed. Let us assume that a radiative sensor sees this scene as a whole in a given
wavelength range, and that, in the reciprocal situation, the sensor illuminates the scene in
the same wavelength range. A fraction a1,p of the power will be absorbed by the tree, a
fraction a2,p will be absorbed by the ambient air; the rest of the radiation will at least reach the
atmospheric cloud level where another fraction a3,p of the radiation will be absorbed. Again
the remaining radiation will reach the upper troposphere where the fraction a4,p will be
absorbed. The remaining atmosphere is assumed to be completely transparent. A small
fraction will reach the moon with a5,p on the shadow side and a6,p on the sun side. A tiny
fraction a7,p of the transmitted power will be scattered towards the sun where it will be
completely absorbed. Finally, the fraction a8,p will escape to space. Now, the received

radiance is Iν ,p = ai,p
Bν ,i

2i=1

8

∑ .

The decomposition can be expanded (e.g. by a fraction of radiation reflected by the tree and
absorbed by the ground surface, and by radiation scattered in the atmosphere). The more
detailed it is, the more accurate will be the result.

Figure 7.3: Night scene with a tree and the
moon with the following decomposition:

     i           Object

1
2
3
4
5
6
7
8

Tree
Ambient air
Air at cloud level
Upper troposphere
Moon without sun light
Moon with sun light
Sun
Cosmic background

To prove his law, Kirchhoff used thought experiments to show that any deviation leads to
violations of thermodynamic principles. By special insulation the object is allowed to interact
with the environment only by radiation. First assume that the emissivity of an object is larger
than its absorptivity. Under isothermal conditions, the object cools because it loses more
energy than it gains. This is against the second law of thermodynamics. On the other hand if
the emissivity is smaller than the absorptivity the object is heated in violation of the first law
of thermodynamics. The solution is to accept Kirchhoff's law. To show that the principle holds
independently at each frequency and polarisation was a main effort of Kirchhoff. For this
purpose the path between the object and the environment is restricted to radiation with the
selected properties, the rest being reflected by filters, polarisers and single-mode
waveguides. The only way to exchange energy is at the selected frequency and polarisation.
Since they are arbitrary, the law must hold at all frequencies and polarisations.

A statement of Sören Kirkegaard (1813 to 1855) with regard to life may be regarded as a
metaphor to Kirchhoff's Law:  Although life happens toward the future, it can only be
understood when looking backward in time.

Kirchhoff's law applies to all types of radiometers, not only to radiation represented by plane
waves or by infinitesimally diverging beams. Therefore it is very general as long as the LTE
condition and reciprocity are valid. Boundary conditions, diffraction and coherent effects are
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automatically included if correct absorptivities are taken into account. Their determination is
the main task, requiring special tools. One of them is the Radiative Transfer Equation.
Other tools may have to be used, e.g. to solve problems with coherent interactions.

8 The Radiative Transfer Equation
This chapter is used to introduce the radiative transfer equation with increasing complexity.

8.1 Radiative transfer without absorption and scattering

Free or homogeneous space
   Iν(r1,θ,φ)

                              θ1                      Iν(r2,θ,φ)

                                            r2-r1

                         dΩ1                                      θ2
    dA1                                              dA2

   Iν(r1,θ,φ)

                             θ1                       Iν(r2,θ,φ)
                                    dΩ2
                    r2-r1

                                                                      θ2
 dA1                                                dA2

Figure 8.1: Following a pencil of
radiation in free space from point r1
to r2 to show that the radiance is
conserved.

Energy conservation of stationary radiation means power conservation. Furthermore, in free
space (or in a homogeneous medium), rays propagate on straight lines. Therefore

  dP1 = Iν (r1,
) n )dνdA1 cosθ1dΩ1 = dP2 = Iν (r2,

) n )dνdA2 cosθ2dΩ2 (8.1)

Since dΩ1 =
dA2 cosθ2

r2 − r1
2 , and dΩ2 =

dA1 cosθ1

r2 − r1
2 , Equation (8.1) means that  Iν (r1,

) n ) = Iν (r2,
) n )

or if ds is an infinitesimal path element along the ray, we can write
dIν

ds
= 0; also valid for Stokes Vector: dIν

ds
= 0 (8.2)

Equation (8.2) is the radiative-transfer equation of free space. It is independent of position,
and it is valid for all ray directions.

Slightly inhomogeneous medium
Now we assume that the medium is slightly inhomogeneous, but scattering and absorption
are still negligible. Reflection and scattering are negligible if the gradient of the real part of
the refractive index is sufficiently small: ∇n' << k , and absorption is negligible if the
imaginary part is n"=0. Now the rays are no longer straight lines, but they follow the rules of
geometric optics (Snell's Law, Fermat's Principle of the shortest path, Eikonal Equation). It
can be shown (Mobley 1994) that the following quantity is conserved:

I1ν =
Iν

n'2
; or in Stokes Vector form I1ν =

Iν

n'2
(8.3)
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Note that n'=n because n"=0. In the more general situation of an anisotropic medium, n' has
to be replaced by the ray-refractive index (Bekefi, 1966).
For illustration and verification of (8.3), we investigate the situation of a one-dimensionally
inhomogeneous medium where the refractive index deceases in a transition region with
increasing height (Figure 8.2).

x3                           dΩ1

                                                θ1
                  n1=1
                             n'(x3)                                              dA
 0

                  n2>1                            θ2

                                                                dΩ2

Figure 8.2: Power conservation
for a refracted ray passing
from one medium in another
through dA. Reflection is
avoided by a soft transition

dn
dx3

<<
1
λ

Power conservation requires dP1=dP2, thus
Iν(1,θ1,φ1)⋅cosθ1⋅dΩ1⋅dA⋅dν = Iν(n2,θ2,φ2)⋅cosθ2⋅dΩ2⋅dA⋅dν (8.4)

From Snell's law we have sinθ1 = n2 sinθ2. Furthermore, since
dΩ1 = sinθ1dθ1dϕ ,  dΩ2 = sinθ2dθ2dϕ , and cosθ1dθ1 = d(sinθ1) = n2d(sinθ2) = n2 cosθ2dθ2 ,
we get

cosθ1dΩ1 = n2
2 cosθ2dΩ2 (8.5)

Equations (8.4) and (8.5) lead to (8.3). Equation (8.3) also means that the Planck function is
not conserved, but the following quantity is:

 B1ν := Bν (r,Tb )
n'(r)2  = 2hν 3

c0
2 exp(hν /kbTb ) −1( )

= constant (8.6)

Since the quantities on the right side are either fundamental constants (h, kb, c0), an
independent but fixed variable (ν), or the brightness temperature Tb, it means that Tb does
not change along the path of propagation. Thus I1ν = B1ν and Tb are conserved quantities.
This is a first important result, the fundamental theorem of radiometry (Mobley, 1994). If
the brightness temperature Tb did change, it would violate principles of thermodynamics.

8.2 Absorbing medium
Consider a volume element dV = ds ⋅ dA , as shown in Figure 8.3, illuminated by an incident
light beam of (normalised) radiance I1ν over an infinitesimal solid angle dΩ. Here ds is a
path element of the beam, and dA is the projected area of the volume element. The incident
intensity is Ii = I1ν dΩ. The power lost from the beam by absorption follows from Equations
(6.11-14) as dPa = γ aIidV . According to Kirchhoff's Law, in LTE there is an equivalent
emission term: dPe = γ aB1ν dΩdV .
                            dV=dA⋅ds

                   dA
         I1ν(s, θ, φ)                           I1ν(s+ds,θ, φ)
                                  ds

Figure 8.3: An interacting volume element
where absorption and emission take
place.

Remark: Apart from (6.14) the absorption coefficient may also be expressed by the
imaginary part n" of the complex refractive index

γa(r) = 2k⋅n"(r); (1/m) (8.7)
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The radiative transfer equation considers the changes that occur to I1ν or I1ν along the
propagation path s. Budgeting the source and loss terms over the infinitesimal step ds the
resulting differential equation is

dI1ν (s)
ds

= γ a (s) B1ν (s) − I1ν (s)( ) (8.8)

The path dependence of B1ν arises from the dependence on the local temperature T(s). By
the use of the normalised quantities, (I1ν and B1ν), the refractive index does not appear
explicitly. In the Rayleigh-Jeans Approximation, the radiative transfer equation simplifies to:

dTb

ds
= γ a (s) T(s) − Tb (s)( ) (8.9)

8.3 Including absorption, emission and scattering
                         dV=dA⋅ds

                   dA
         I1ν(s, θ, φ)                           I1ν(s+ds,θ, φ)
                                  ds

                     I1ν(s,θ',φ')

Figure 8.4: An interacting volume element
where absorption, emission and
scattering take place.

In the final step towards the complete Radiative Transfer Equation (RTE), volume
scattering in the volume element dV is included. The losses contain contributions from
absorption and scattering, the sum γe = γa + γs being the extinction coefficient, and the ratio

ϖ0 =
γ s

γ e

(8.10)

is called the single-scattering albedo. The radiative transfer equation now reads

 dI1ν (s)
ds

= −γ e (s) ⋅ I1ν (s) + ε1ν (s) (8.11)

The source term

ε1ν(s) = γa(s)⋅B1ν(s) + γ e (s)
4π

p(θ,φ,θ ',φ ') ⋅ I1ν (s,θ ',φ ') ⋅ dΩ
4 π
∫ ' (8.12)

consists of thermal emission (first term) and of radiation scattered from other directions into
the considered ray path (second term). The integral in the second term contains the
normalised radiance I1ν at path position s propagating in all directions. The so-called phase
function or indicatrix p(θ, φ, θ', φ') describes the transfer of radiance from direction (θ', φ') to
direction (θ, φ) of the considered propagation path. The phase function is reciprocal (in
reciprocal media): p(θ ',φ ',θ,φ) = p(θ,φ,θ',φ '). Energy conservation requires that

1
4π

p(θ,φ,θ ',φ ') ⋅ dΩ
4 π
∫ =

γ s

γ e

= ϖ0 (8.13)

If the scattering in the volume element dV can be treated by a spherical wave, it can also be
expressed by the formalism of Part 1. This should be possible if dV is sufficiently small. Then
the phase function is related to the mean bistatic scattering cross section meanbi,σ of the
volume element (see also Equations (6.11) to (6.14)):

e

bi

meane

meanbip
γ

ϑγ
σ

ϑσ
φθφθ )()(

)',',,(
,

, == (8.14)
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where the coordinate system has changed from the scattering plane to a laboratory
perspective, defined by the spherical (θ,φ ) coordinates with one preferred direction (θ = 0).
For µ = cosθ  and µ'= cosθ ' , the scattering angles follows from

cosϑ = µµ'+ 1− µ2( )1− µ'2( )cos φ − φ '( ) (8.15)

In the Rayleigh-Jeans Approximation, the RTE is obtained by replacing I1ν by Tb, and B1ν by
T:

dTb (s)
ds

= −γ e (s) ⋅ Tb (s) + γ aT(s) +
γ e (s)
4π

p(θ,φ,θ',φ ') ⋅ Tb (s,θ ',φ ') ⋅ dΩ
4 π
∫ ' (8.16)

This is an integro-differential equation for Tb in the propagation direction, including Tb in all
other directions. The coupling of radiation propagating in different directions causes inherent
difficulties in practical solutions. However, a formal solution is obtained as shown below.

8.4 Formal solution: integral form of the RTE
                                       Absorbing, scattering, and emitting medium
        I0= I1ν(s=s1,θ,φ)                                                                        I1= I1ν(s=s2,θ,φ)

        =I1ν(τ=τ2,θ,φ)                                                                 = I1ν(τ=0,θ,φ)

                            s1                       s    s+ds                   s2

                            τ2                        τ    τ-dτ                    0
Figure 8.5: Integration paths in s and τ through the medium of radiative interaction.

Let us recall that we are looking for an expression to describe how Tb or I1ν changes along
the path from a starting point at s1 to an end point at s2. First the radiative transfer equation is
simplified by making the path variable non dimensional and calling it optical depth. This
optical depth, also called opacity τ(s) at a variable path position s as seen from the end
position s2 is defined by

τ(s) :  = γ e
s

s2

∫ (s')ds' (8.17)

Note that dτ = −ds γe  and ds are in opposite directions. The opacity replaces the geometrical
path by an interaction - weighted path. Regions without interaction are not "counted".
Furthermore the source function J1ν is defined by

J1ν :  =
ε1ν

γ e

= (1− ϖ0)B1ν (T) +
1

4π
p(θ,φ,θ ',φ') ⋅ I1ν (s,θ ',φ ') ⋅ dΩ

4 π
∫ ' (8.18)

With these quantities the radiative transfer equation is simplified to
dI1ν

dτ
− I1ν = −J1ν (8.19)

which can also be written as
d

dτ
e−τ I1ν (τ )( )= −e−τ J1ν (8.20)

Integration from τ=0 to τ=τ 2 = γ eds
s1

s2∫  gives the change of exp(-τ)⋅I1ν in the considered

medium, leading to a formal solution or integral form of the RTE at the output position s2:

I1ν (s = s2) = I1ν (τ = 0)= I1ν (s1)e
−τ 2 + e−τ J1ν (τ)dτ

0

τ 2

∫ (8.21)

where I1ν(s1) is the input, and τ is given by (8.17). In the Rayleigh-Jeans Approximation this is
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τφθτφθφθ
π

τϖ τ
τ

π

τ dedTpTesTsT bbb
−− ∫ ∫ 








Ω⋅⋅+−+=

2

2

0 4
012 ')',',()',',,(

4
1)()1()()(   (8.22)

Again, this form is the same for refractive and non-refractive media. It reduces to the scatter-
free situation for γs= 0 and thus p=ϖ0=0, in which case dτ= −ds γa and

ττ τ
τ

τ deTesTsT bb
−− ∫+=

2

2

0
12 )()()( (8.23)

where τ is given by (8.17), but with γe = γa.

8.5 The Flux Equation
First it is noted that the path derivative in the RTE can be written as

  

dI1ν (r,) n )
ds

= ) n ⋅ ∇I1ν (r,) n ) = ∇ ⋅ () n I1ν (r,) n )) (8.24)

where   
) n  is the unit vector in the direction of the path s. Integrating (8.24) over direction gives

the flux divergence ∇ ⋅ F1ν  where F1ν  corresponds to (7.5), but for the normalised radiance
I1ν . Integrating the right-hand side of the RTE (8.11-8.12) gives

∇ ⋅ F1ν = −γ ew1ν + γ a 4πB1ν +
γ e

4π
I1ν (θ',φ ') p(θ,φ,θ ',φ ')dΩdΩ'

4 π
∫

4 π
∫

 

 
 

 

 
 (8.25)

The integrals are eliminated with the normalisation (8.13): −γ ew1ν + γ a 4πB1ν + γ sw1ν( ) and
with the introduction of w1ν = I1ν dΩ

4 π∫ = cu1ν . Then we get:

∇ ⋅ F1ν = γ a −w1ν + 4πB1ν( ) (8.26)

This is the net source (+), sink (-) of radiative power per unit volume element and per unit
frequency interval at the given location. The equation states that F1ν  changes by the
absorption coefficient only. The role of scattering has disappeared. In a conservative
medium, defined by γ a = 0 , the flux is free of divergence: ∇ ⋅ F1ν =0. This is also true for
γ a > 0  in thermodynamic equilibrium where the two terms in the bracket of (8.26) cancel.
Integration of (8.26) over frequency gives the rate of change of radiation energy density
which is related to the local cooling /heating rate by radiation.

∇ ⋅ F1 = γ a −w1ν + 4πB1ν( )
0

∞

∫ dν = −ρc p
∂T
∂t

 (8.27)

where ρ  is the mass density and c p  the specific heat at constant pressure in the given
volume element. This is the continuity equation for the balance of radiation and heat
energy (expansion and internal). In the special case where the absorption coefficient is
constant over frequency, we can directly express the emission term by the temperature:

∇ ⋅ F1= γ a −w1 +
8π 5(kbT)4

15h3c0
2

 

 
 

 

 
  (8.28)

Exercise:
Compute the radiative heat loss and cooling rate at night at the top of the atmosphere for
T = 220, 250, 270K , if we assume Equation (8.28) to apply and if γ a = 0.1/km . Use
cp =1005J /kg /K  (dry air) and ρ = 0.4kg /m3  (typical value at 10km altitude. Furthermore,

assume that w1 =
4π 5(kbT)4

15h3c0
2  (radiation comes mainly from the lower hemisphere).
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8.6 Plane-parallel medium
Radiation in a 3-dimensional medium is difficult to handle. Simpler are 1-dimensional media
where the parameters depend on one spatial coordinate, only. We will concentrate on plane-
parallel media to mimic situations close to the surface of a planet (Figure 8.6). The medium
parameters depend on z (or τ z ) only.

                 z                          s = z /µ ; where θµ cos=           (8.29)

Top at  z=z2,  τ z = 0

                                   τz                              θ

Bottom z=z1,τ z = τ1                                                                                                                x

Figure 8.6: Geometry in a plane-parallel atmosphere with height variable z. The path is at an angle θ with respect
to the z axis. An azimuth angle (φ) measured from the horizontal x axis is used to orient the path around the z
axis.

A first ray path s  in direction ),( φθ  is shown in Figure 8.6. Another ray path 's  in a direction
)','( φθ  may be defined similarly by s'= z /µ', where 'cos' θµ = . By the convention of

Chandrasekhar (1960), we understand µ>0, writing −µ  to express downwelling rays.
Two rays may interact through scattering through the phase function, given by (8.14),
depending also on z (or τ z ). The scattering angle ϑ  is determined by (8.15).
Eliminating s by z and µ, the radiative transfer equation reads

 µ dI1ν (z,µ,φ)
dz

= −γ e (z) ⋅ I1ν (z,µ,φ) + ε1ν (z,µ,φ) (8.30)

and with the introduction of the zenith optical depth τ z

τ z :  = γ e
z

z2

∫ (z')dz' (8.31)

thus µττ /z= , giving (see also Chandrasekhar, 1960, p. 12)

µ dI1ν

dτ z

= I1ν − J1ν (8.32)

with the formal solutions for upwelling and for downwelling radiation at z (or τ z ):

I1ν (τ z,+µ,φ)= I1ν (τ1,µ,φ)exp −
τ1 − τ z

µ
 

 
 

 

 
 + exp −

τ z '−τ z

µ
 

 
 

 

 
 J1ν (τ z ',+µ) dτ z '

µτ

τ1

∫ (8.33)

I1ν (τ z,−µ,φ)= I1ν (0,−µ,φ)exp −
τ z

µ
 

 
 

 

 
 + exp −

τ z − τ z '
µ

 

 
 

 

 
 J1ν (τ z ',−µ) dτ z '

µ0

τ z

∫ (8.34)

where τ1 = τ z(z = z1) is the zenith opacity of the total layer, and the source function J1ν is,
according to (8.18), given by

J1ν :  =
ε1ν

γ e

= (1− ϖ0)B1ν (T) +
1

4π
p(τ z,µ,φ,θ ',φ ') ⋅ I1ν (τ z,µ',φ ') ⋅ dΩ

4 π
∫ ' (8.35)

The escaping radiances are solutions at the boundaries ( τ z = 0, τ1) of the layer:

I1ν (0,+µ,φ)= I1ν (τ1,µ,φ)exp −
τ1

µ
 

 
 

 

 
 + exp −

τ z '
µ

 

 
 

 

 
 J1ν (τ z ',+µ) dτ z '

µ0

τ1

∫ (8.36)
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I1ν (τ1,−µ,φ)= I1ν (0,−µ,φ)exp −
τ1

µ
 

 
 

 

 
 + exp −

τ1 − τ z '
µ

 

 
 

 

 
 J1ν (τ z ',−µ) dτ z '

µ0

τ1

∫ (8.37)

and respective expressions apply to the Rayleigh-Jeans Approximations.

9 Solutions Without Scattering
Here we consider examples of the scatter-free solution (8.23) in the Rayleigh-Jeans
Approximation:

ττ τ
τ

τ deTesTsT bb
−− ∫+=

2

2

0
12 )()()( (8.23)

The same types of solutions apply to the radiance (instead of Tb ), with the blackbody
radiance (instead of T ) if the Rayleigh-Jeans Approximation is not valid. Required is, apart
from boundary conditions, the spatial distribution of temperature T  and of the absorption
coefficient γ a  at the frequencies ν  of interest.

9.1 Note on spectroscopy
For given physical conditions (composition of the medium, temperature, pressure), γ a  is
determined by a suitable physical or empirical model. Spectral lines, bands, and continua
occur in gases due to molecular relaxation and rotation (microwave), vibration (infrared),
and due to electronic excitation (visible and UV range). With increasing density, and
especially in liquids and solids, the lines broaden, getting increasingly distorted, especially at
lower frequencies. Spectroscopy describes these effects and deals with the physics behind,
a topic beyond this lecture. Spectroscopy in the microwave range is part of the lecture on
Microwave Physics.
Ready-to-use models are available today for different media over specified frequency
ranges. For the terrestrial atmosphere, a number of models are available, e.g. MODTRAN
(Abreu and Andersen, 1996), covering a very wide spectral range, and for microwaves, a
standard is the Microwave Propagation Model (MPM93) by Liebe et al. (1993), here
available as the MATLAB function, mpm93.m. See also Rosenkranz (1998) for further
improvements (ros98.m)

9.2 Layers at constant temperature

Single layer
If the ray passes through a medium at constant temperature T2, the integration of (8.23) is
straightforward, yielding

Tb (s2) = Tb (s1)e
−τ 2 + T2(1− e−τ 2 ) (9.1)

and τ 2 = γ ads
s1

s2∫ . There is no need for homogeneity of γ a  because the quantity is eliminated

by the transformation to τ . Comparing (9.1) with Kirchhoff's law (7.21), it is obvious that N=2,
with Volume 1 being the background, T1=Tb(s1), and a1= exp(-τ2), Volume 2 being the
homogeneous layer at T2, with a2= 1- a1, and thus Equation (7.18) is fulfilled.

1. In optically thin media (τ2 <<1), we have a1 ≅ 1-τ2, a2 ≅ τ2, and Tb(s2) is linear in τ2.
2. For optically thick media (τ2 >>1), the background radiation is hidden, and Tb(s2) =T2.

Thus the quantity is independent of τ2.

Further layers at different temperatures
Assume in the example of a single layer that the ray path continues beyond s2 crossing a
third volume at temperature T3 for s2< s <s3. The input brightness to this volume is Tb(s2), and
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the modification by Volume 3 is equivalent to the second term in (9.1), but with the index
increased to 3:

Tb (s3) = Tb (s2)e−τ 3 + T3(1− e−τ 3 ) (9.2)

and τ 3 = γ ads
s2

s3∫ . Kirchhoff's law is again confirmed, now with N=3, a1=exp(-τ2-τ3), a2= exp(-

τ3)⋅[1- exp(-τ2)], and a3= 1- exp(-τ3). This type of solution can be iterated to any number of
layers. The concept is useful in numerical solutions.

9.3 Effective mean temperature
The solution (8.23) in the form of Equation (9.1) is very practical, even in situations where T
is not constant. There exists an effective mean temperature Tm =T2 for which (9.1) is valid:

Tm =
T

0

τ 2∫ (τ)e−τ dτ

1− e−τ 2
(9.3)

Linear temperature profile
As an example let us consider the situation of a linear temperature profile:

T = Tc + Tdτ (9.4)
Inserting (9.4) in (9.3) gives

Tm = Tc + Td 1−
τ 2e

−τ 2

1− e−τ 2

 

 
 

 

 
 ;   thus Tb (s2) = Tb (s1)e

−τ 2 + Tm (1− e−τ 2 ) (9.5)

= Tb (s1)e
−τ 2 + (Tc + Td )(1− e−τ 2 ) − Tdτ 2e

−τ 2

Again, two different cases are to be distinguished:
1. In an optically thin layer (τ2 <<1), Tm converges to the average physical temperature

of the volume 25.0 τdc TTT += , and this value is again linear in τ 2.
2. For τ2 >>1, Tm converges to the physical temperature at position τ=1, giving

Tm = T(τ =1) = Tc + Td . Geometrically, the position is situated at a distance, ∆s = 1/γa,
from s2. This property is used for temperature profiling in spectral bands with high
absorption (see Figure 9.5).

9.4 Linear temperature profile in an exponentially decreasing atmosphere

9.4.1 Planetary troposphere
In the planetary troposphere the density of an absorbing agent, and thus aγ , often
deceases exponentially with increasing height z (e.g. absorption by oxygen in the 50 to 70
GHz range, water vapour near 22 GHz, 183 GHz), whereas T decreases linearly with z (up to
the tropopause at height zp) due to adiabatic cooling:

zTT c Γ−= ; 0 ≤ z ≤ zp ; else T = Tp = T0 − Γzp (9.6)

0/
0

zz
a e−= γγ (9.7)

Here we will assume a plane-parallel atmosphere (Figure 9.1), and we will first consider the
situation for observations from the surface and then from space. The integration of the RTE
requires some efforts, but the results will be instructive. They are useful for the calibration of
instruments (tipping curve) and in the retrieval of atmospheric properties. Main MATLAB
functions are  expat (for x=1) and expatrec (for x<1) for downwelling radiation, expatup
(x=1) and expatuprec (x<1) for upwelling radiation to compute the functions L↓,↑  (see below).
All related function names begin with "expat".
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9.4.2 Downwelling radiation

                                                            z                        s              τ z

z = zp,  τ z = τ p

                                                T(z)            θ

z = 0, τ z = 0

Figure 9.1: Plane-parallel atmosphere with a linear temperature profile up to height zp .

First we assume observation of Tb from the surface at z = 0, τ z = 0 in a direction with a
zenith angle θ, thus µ/zs =  where θµ cos= . Equation (8.23) is adapted to the plane-
parallel medium:

Tb (τ = 0, µ) = Tb1 exp −
τ p

µ
 

 
 

 

 
 +

1
µ

T(τ z )
0

τ p

∫ exp −
τ z

µ
 

 
 

 

 
 dτ z (9.8)

where Tb1 is the brightness temperature at the tropopause, and the directions of τ z  and of s
(from −µ  to +µ) have been changed by defining

τ z = γ a (z')dz
0

z∫ ' ; τ p = γ a (z')dz
0

z p∫ ' and τ1 = γ a (z')dz
0

∞∫ '  (9.9)

Inserting (9.7) into (9.9) gives τ z = τ1 1− e−z / z0( ) and τ1 = γ 0z0 , therefore z = −z0 ln 1−
τ z

τ1

 

 
 

 

 
  is

used together with (9.6) to define the τ z  dependence of temperature:

T(τ z) = T0 + Γz0 ln 1−
τ z

τ1

 

 
 

 

 
 ; 0 ≤ τ z ≤ τ p (9.10)

Equation (9.8) now reads Tb = Tb1e
−β +

1
µ

T0 + Γz0 ln 1− τ z /τ1( )( )
0

τ p

∫ exp −
τ z

µ
 

 
 

 

 
 dτ z ; where

β = τ p /µ , and with x'= τ z /τ1  and µτα /1=  the equation can be written as

Tb↓ = Tb1e
−β + T0(1− e−β ) − Γz0αL↓; where L↓ = − ln 1− x'( )

0

x

∫ e−αx 'dx' , (9.11)

and x = τ p /τ1 = β /α =1− exp(−zp /z0) . The arrow ↓ indicates the downwelling direction.
Unfortunately there is no direct analytical solution for L↓ . Note that the integrand is negative
because the argument of the logarithm is in the interval 0,1[ ]. For the 0 ≤ x '≤ x ≤1[ ] limited

values we replace the logarithmic function by its Taylor Series: ln(1− x') = −
x'n

nn=1

∞

∑  , leading

to a convergent series of integrals

L↓ = Ln↓
n=1

∞

∑ ; where  Ln↓ =
1
n

x'n
0

x

∫ exp(−αx ')dx ' ;  0 < x ≤1 (9.12)

The integral Ln↓ of (9.12) cannot directly be solved, but for n=1 we find by partial integration

L1↓ =
1− t(1+ β)

α 2 ; where β = αx;  t = e−β (9.13)

and for n >1 , there exists a recurrence relation, also found by partial integration
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Ln↓ =
−tx n

αn
+

1
α

x'n−1 exp(−αx ')dx '
0

x

∫ = −tx n

nα
+

n −1
α

Ln−1,↓ (9.14)

Instead of directly computing Ln↓, it is advantageous to introduce Jn = Ln↓ / t . For this
quantity we find the downward recurrence formula

Jn−1 =
xn

n(n −1)
+

αJn

n −1
;   Jn = Ln↓ / t (9.15)

Downward recurrence is used to get stable solutions from (9.15), starting at m=maximum(n),

noting that Jm + jj=1

∞∑ <1/m → 0, for sufficiently large m. For the starting value we have

Jm =
x m +1

m(m +1)
(9.16)

The remaining terms then follow from (9.15). This recurrence is computed with the MATLAB
function expatrec(m, alfa, x). The convergence is fast for x<0. However, for x=1 (this
value means that the stratosphere has no influence on Tb↓), either a very large m has to be
selected or a special treatment is needed: MATLAB: expat(alfa), expatN(alfa). The
function was approximated for α to at least 40 by the fit:

L↓(α,x =1) ≅
exp −

0.794α
1+ 0.0677α

 
 
 

 
 
  ;  0 ≤ α ≤ 6;               stdev =1.4%

exp −0.692 −
0.649α

1+ 0.0732α
 
 
 

 
 
  ; 6 < α < 40;  stdev ≅ 2%

 

 
  

 
 
 

(9.17)

The following figure shows results of L↓  for a number of x values. It is found that for x >0.6
the functions rapidly converge to the top curve (x=1).

Figure 9.2: Semi-logarithmic plot of the function L↓(α)  versus total path opacity α  for x= 0.1, 0.2, 0.4, 0.6, 0.8, 1.
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Now, with the neglect of the cosmic background, we can write for the downwelling brightness
temperature at the tropopause

Tb1 = Tp 1− eβ −α( )= T0 − Γzp( )1− eβ −α( ) (9.18)

The brightness temperature Tb↓ = Tb1e
−β + T0 1− e−α[ ]−αΓz0L↓ β( ) at the surface becomes

Tb↓ = T0 1− e−α[ ]− Γzp e−β − e−α( )−αΓz0L↓ α, x( ) (9.19)

Remember that α = τ1 /cosθ  is the total opacity of the atmosphere along the view direction,
and β = αx  is the corresponding value for the troposphere. The effective mean temperature
(9.3) follows from (9.19)

Tm = T0 − Γz0F↓(α,x) ; F↓ =
zp e−αx − e−α( )+ αz0L↓(α,x)

z0(1− e−α )
(9.20)

The factor F↓  in (9.20) is shown in Figure 9.3 versus zenith angle for the zenith opacities of
τ1= 0.1, 0.4 and 2 and for two values of x: 0.7 and 1. For small τ1 the curves are very flat
over a large angular range, meaning that Tm  is nearly constant. This fact is important for the
tipping calibration which is an extrapolation to the cosmic brightness (≅ 3K).

Figure 9.3: Angular variation of the factor F↓  in (9.20) affecting Tm for zenith opacities τ1 of 0.1, 0.4 and 2.0 for
x= 0.7 and x=1.

As an example we compute and present in Figure 9.4 the angular dependence of Tb↓  for
zero background for the situations of Figure 9.3, and for standard values of the terrestrial
troposphere (Γ= 6.5K/km and z0 =7.5 km). The difference between x=0.7 and x=1 is quite
small in all cases.
Figure 9.5 shows a comparison of measured and computed brightness temperatures at 52.5
and 53.94 GHz versus zenith angle. The agreement is reasonable.
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Figure 9.4: Angular dependence (tipping curves) of Tb↓  in K for the situations of Figure 9.3, for T0 = 290K ,
Γ = 6.5K /km , z0 = 7.8km .

Figure 9.5: Measured angular dependence of Tb↓  in K at 52.5 (o) and 53.94 (x) GHz and comparison with
computations for T0 = 291K , Γ = 6.5K /km , zp =12km , 52.5 GHz: γ 0 = 0.18 /km z0 = 6.4km  and
at 53.94 GHz: γ 0 = 0.48 /km , z0 = 6.0km .  ASMUWARA measurements of 18. 09. 2002 (Martin, 2003).
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9.4.3 Upwelling radiation
For upwelling radiation we are interested in the brightness temperature Tb↑  above the
atmosphere. First we have to consider the brightness temperature at the height zp  of the

tropopause where τ z = τ p = τ1 1− e−z p / z0( ). In analogy to (9.8), and using (9.9) for zτ , the
formal solution reads

Tbp = Tb (τ z = τ p,  µ) = Tb 0e
−β +

1
µ

T(τ z)
0

τ p

∫ exp −
τ p − τ z

µ
 

 
 

 

 
 dτ z  (9.21)

where 0bT  is the upwelling brightness temperature at the surface ( 0=zτ ). Expressing )( zT τ
by (9.10) as before gives again the form of (9.11), adapted to upwelling radiation

Tbp = Tb 0e
−β + T0(1− e−β ) − Γz0αL↑(β) (9.22)

where  L↑  is given by

L↑ = −e−β ln(1− x)eαx

0

β /α

∫ dx = Ln↑n=1

∞∑ ; where Ln↑ =
e−β

n
xn

0

β /α

∫ exp(+αx)dx (9.23)

Now we have (again with t = e−β ) the recurrence relation

Ln↑ =
t
α

xn

nt
− x 'n−1 exp(+αx')dx'

0

x

∫
 

 
 

 

 
 =

xn

nα
−

n −1
α

Ln−1,↑ (9.24)

which is again more stable in the downward direction,

Ln−1,↑ =
xn

n(n −1)
−

αLn,↑

n −1
(9.25)

An approximation to L↑(α,x =1)  (for more accurate computations, use the MATLAB
functions expatup(alfa), expatupN(alfa)) is given by

L↑(α, x =1) ≅ 0.0257 +
1− 0.0257

1+ 0.2709α
;   stdev=0.0012 (9.26)

For 0.5<x<1 the function can be roughly approximated by

L↑(α, x) ≅ 0.0257 +
1− 0.0257

1+ 0.2709α
 
 
 

 
 
 exp −3.7(1− x)( ) (9.27)

The function L↑(α,x) (MATLAB: expatuprec computed with the recursive formula) is
shown in Figure 9.6 versus α  for various x values. For x=1 the function is also decreasing
from 1, but in much weaker way than L↓ . Furthermore for x<1 all function values are
decreased, in contrast to the downwelling situation.
The effective mean temperature (9.3) at the tropopause level follows from (9.22)

Tm = T0 − Γz0F↑;  where   F↑ =
αL↑(α,x)

1− t
(9.28)

The upwelling brightness temperature Tb,↑ above the atmosphere follows from Tbp  after
further transformation in the stratosphere. If it can be represented by a constant temperature,
namely by the one at the tropopause Tp = T0 − Γzp , we get

Tb,↑ = Tbpe
−(α−β ) + Tp (1− e−(α−β )) (9.29)

This function, for Tb 0 = T0 , is plotted versus incidence angle in Figure 9.7, where the data are
also compared with satellite observations. The parameters listed in the figure caption are
reasonable for the selected frequency of 53.4 GHz with a zenith opacity τ1 of 2.25.
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Figure 9.6: The function L↑(α,x) versus α  for x values (from top to bottom) of 1, 0.96, 0.9, 0.8, and 0.6
(computed with the MATLAB function expatuprec and plotted with expatuprecscan).

Figure 9.7: Angular variation of measured (o) and computed (dashed line) Tb,↑ at 53.4 GHz over tropical rain
forest. Measurements by AMSU-A (NOAA satellite), computations for γ 0 = 0.5 /km,  Γ = 6.5K /km ,
z0 = 4.5km , zp =14km , T0 = 300K , thus τ1 and x turn out to be 2.25 and 0.955, respectively.
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10 Standard Problems for Scattering
In this chapter emission of thermal radiation is neglected; it can be included afterwards by
the application of Kirchhoff's law. Furthermore, from here on, the zenith opacity is simplified
from τ z  to τ , and the Index 1 for 1/n2  normalised radiance is omitted as well.

10.1 Scattering at a half-space
Even to solve the scatter-free situations, we need to know the interaction of the downwelling
radiation once it reaches the surface. Part of this radiation may be absorbed whereas
another part may be returned to the atmosphere by reflection and scattering at or below the
surface. In this way the downwelling and the upwelling solutions of the RTE get linked:
Tb 0 = (1− r1)T0 + r1Tb,↓(z = 0) , see e.g. Mätzler (2005) and references therein.

Geometry
The standard geometry is a non-scattering upper half-space, a scattering half-space below,
and the two are separated by the plane z=0 (Figure 10.1). Downwelling radiation from the
upper half-space is from a single direction (−µ0,φ0 ) where −µ0 = cosθ0,  π ≥ θ0 > π /2 . The
task is to determine the radiance Iν(0,µ,φ) that escapes from the lower to the upper half-
space.

                                                                  z
                                                            θ0

                               Iν(0,µ,φ)=?
           0                                        Iν0(-µ0,φ0)      0

          τ

Figure 10.1: Geometry of illumination of
a semi-infinite scattering medium,
called half-space, at z<0.

The scattering function
The solution of the task is formally solved by the definition of the non-dimensional scattering
function S, see Chandrasekhar (1960), p. 17:

Iν(0,µ,φ)= 
πµ4
1 dΩ'

2π
∫ S(µ,φ,µ',φ')⋅Iν(0,-µ',φ') (10.1)

where the integration (at z=0) is over all downwelling directions (µ': 0 to 1, φ': 0 to 2π), and
dΩ'= dµdφ . If the downwelling radiation is limited to a single direction, as for the standard
situation

Iν (0,−µ',φ ') = Fνδ(µ'−µ0)δ(φ '−φ0)= Iν0(-µ0,φ0) (10.2)

where Fν  is the spectral flux density in the incident direction (-µ0,φ0), and where δ means the
Dirac Delta function, we get

Iν(0,µ,φ) = Fνz

4πµµ0

S(µ,φ,µ0,φ0) = Fν

4πµ
S(µ,φ,µ0,φ0) (10.3)

and Fνz  is the vertical component of Fν , i.e. downwelling power per unit horizontal area.

Comments
1. One reason for the special choice of S is the reciprocity:

S(µ,φ,µ0,φ0) = S(µ0,φ0,µ,φ) (10.4)

2. The definition of S is identical with the bistatic surface-scattering coefficient σ 0 used in
microwave scattering, see Ulaby et al. (1981), p. 250.
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3. Relation to bistatic scattering cross section: Equation (10.3) is similar to the situation
in Chapter 2 for single scatterers. But here, the volume is infinite in extent; therefore, an
adaptation is needed. Radiation scattered by an incident intensity Ii = F  does not produce a
spherical wave, as in Section (2.1), but plane waves. The scattering directions for escaping
radiation are limited to the upper half-space with solid angle 2π. Nevertheless, with the
limitation of the illuminated surface to an area A, and with the assumption that scattered
radiation escapes at the same place as where the incident radiation entered, a
correspondence can be established between S and the bistatic scattering coefficient σbi:

S(µ,φ,µ0,φ0) = σbi(A)/A (10.5)
4. Emissivity and reflectivity
The absorptivity a1 in a given direction and thus the emissivity e1 (reciprocal direction) of the
lower half-space follows from Kirchhoff's Law with N=2:  e1 = a1 =1− r1, where r1 is the
reflectivity of the lower half-space (and thus the emissivity of the upper half-space). This
quantity can be determined from S by computing the ratio of the scattered upwelling
Fν +(τ = 0)  flux to the downwelling incident flux Fνz :

 r1(µ0,φ0) =
Fν +

Fνz

; where Fν + = µIν (0,µ,φ)dΩ
2π
∫ ; →  r1 =

1
4πµ0

S(µ,φ,µ0,φ0)dΩ
2π
∫ (10.6)

The normalisation by Fνz  (not Fν ) is required because the incident intensity is diluted over
the horizontal area with respect to an area perpendicular to the beam.

5. Polarisation
A full treatment of polarisation requires S to be replaced by a 4x4 matrix. However, very often
only one pair of orthogonal polarisation states, p and q, respectively is required. Then we
need two scattering functions to describe the like- and the cross-polarised components,
respectively:

Iν,p(0,µ,φ) = 
Fνz,p

4πµµ0

Spp(µ,φ,µ0,φ0); Iν,q(0,µ,φ) = 
Fνz,p

4πµµ0

Sqp(µ,φ,µ0,φ0)   (10.7)

Examples
1. Lambert scattering is an empirical law with complete depolarisation ( Spp = Sqp = S /2)
found for many rough surfaces:

S(µ,φ,µ0,φ0) = S0µ0µ; →   Iν(0,µ,φ) =S0Fνz/4π (10.8)
where S0 is a constant. For the reflectivity we get

Fν + =
S0Fνz

4π
2π µdµ =

0

1

∫ S0Fνz

4
;  therefore  r1 =

S0

4
(10.9)

2. Specular reflection:
A perfectly flat interface can produce specular reflection where all reflected radiation is in the
mirror direction. In this case there is no need for a scattering function because the azimuthal
direction is conserved (φ = φ0) and the incidence angle is equal to the reflection angle
(µ = µ0). Nevertheless it is sometimes useful to express the situation with an appropriate S
function using the delta function

S(µ,φ,µ0,φ0) = 4πµ0 r1δ(µ − µ0)δ(φ − φ0) (10.10)

The reflectivity r1  is recovered by the integration according to (10.6).

3. Blackbody:
If  S=0 we get r1 =0, which means that there is no reflection. Then the half-space is called a
blackbody. According to Kirchhoff's law this body has emissivity 1.
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10.2 Scattering in and transmission through a layer
Standard Problem 2 is a scattering layer of finite thickness. Illumination is a single source
from above as in Section 10.1, and emission is again neglected.

Geometry
A plane-parallel layer of finite thickness (-z1≤ z ≤ 0) is illuminated with a parallel beam from
direction (-µ0,φ0).

                                                                          z
                                                             θ0

           0      Iν(0,µ,φ)       Iν0(-µ0,φ0)                0

          τ

          τ1                                                            -z1

        Iν0(τ1,-µ0,φ0)                        Iν(τ1,-µ,φ)

Figure 10.2: Geometry of a plane-
parallel scattering layer illuminated
by a beam of radiation from above
showing the direct and scattered
components.

Scattering and transmission functions
The scattering function S is defined as in Section 10.1. Radiation escaping at the lower
boundary of the medium is split into a direct and a scattered component, the latter being
described (in analogy to S) by a transmission function T. The direct component is given by

Iν0(τ1,-µ0,φ0)= Fν(τ1)= Fν⋅t0, where t0=exp(-τ1/µ0) (10.11)

The scattered-and-transmitted radiance at τ=τ1  is defined by

Iν(τ1,-µ,φ)= Fνz

4πµµ0

T(τ1,µ,φ,µ0,φ0) (10.12)

where T(τ1,µ,φ,µ0,φ0) is the transmission function, and for diffuse illumination we have, in
analogy to (10.1), for the scattered-and-transmitted part

Iν(τ1,-µ,φ)= ∫ ∫
π

ν µφφµ−⋅φµφµτ
πµ

1

0

2

0
1 '')',',0()',',,,(

4
1 ddIT (10.13)

Transmissivity and emissivity
The reflectivity is given again by Equation (10.6), and the transmissivity, t1, expressing the
fraction of the power transmitted through the layer, is given by (10.14), taking into account
the direct beam by t0:

t1 = t0 +
1

4πµ0

T(µ,φ,µ0,φ0)dΩ
2π
∫ (10.14)

Application of Kirchhoff's Law, now with N=3 for the three regions, gives the layer emissivity
valid for the reciprocal direction (µ0,φ0 + π ):  e1=1− t1 − r1.

Comments
1. Reciprocity, Equation (10.4), is also valid for T.
2. Standard Problem 1 is recovered by choosing τ1 → ∞ .
3. Scattering layer above a Lambert surface is called
the planetary problem, see Chandrasekhar (1960) § 72.
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10.3 Distinction between direct and scattered radiation
In connection with the standard problems, it is useful to write the radiative transfer equation
in the following form (again neglecting emission)

),,(),,(
φµτ=

τ
φµτ

µ ν
ν I

d
dI

−
1

4π
p(µ,φ,µ',φ ')Iν (τ,µ',φ ')dΩ

4 π
∫ '− Fe−τ / µ0

4π
p(µ,φ,−µ0,φ0)   (10.15)

where Iν(τ,µ',φ') consists of scattered radiation, only. The last term in (10.15) is the single-
scattered radiance produced by the reduced incident intensity Ft0 at position τ, where
t0=exp(-τ/µ0).
                                                                                                                     F
                     0

                            τ            dτ                      F⋅exp(-τ/µ0)                Iν(τ,µ,φ)

Figure 10.3: Illustration of the reduced incident intensity at a given position τ .

10.4 Axial symmetry
A further standard situation is axial symmetry, both in the phase function and in the
illumination. The consequence is a simplification of the RTE (again neglecting thermal
emission). By integration of the RTE over azimuth, we get (since dΩ'= dφ 'dµ')

),(),(
µτ=

τ
µτ

µ ν
ν I
d

dI - 1
2

p0(µ,µ') ⋅ Iν (τ,µ') ⋅ dµ
−1

1

∫ ' (10.16)

where p0(µ,µ') is the phase function averaged over azimuth:

p0(µ,µ')= 1
2π

p(µ,φ,µ',φ')dφ
0

2π

∫ (10.17)

Generally p(cosϑ ) , with cosϑ = µµ'+ 1− µ2( )1− µ'2( )cos φ − φ '( ), see equation (8.15), is
expressed by a series of Legendre Polynomials with coefficients gl  (Thomas and Stamnes,
1999, p. 178, Chandrasekhar, 1960, p. 7, Meador and Weaver, 1980).

p(x) = ϖ0 (2l +1)glPl (x)
l= 0

∞

∑ ; where x = cosϑ , gl =
1

2ϖ0

p(x)Pl (x)dx
−1

1

∫ (10.18)

The big advantage of this representation is that p0(µ, µ') of (10.17) can be expressed by the
same coefficients, writing:

p0(µ,µ') = ϖ0 (2l +1)glPl (µ)Pl (µ')
l= 0

∞

∑ (10.19)

This representation is especially useful if the series is limited to a small number of terms. For
the lowest orders we have: P0 =1; P1 = x; P2 = 0.5(3x 2 −1); P3 = 0.5(5x 3 − x) ,
P4 = (35x 4 − 30x 2 + 3) /8 . Furthermore the polynomials are orthogonal with

2l +1
2

Pl (x)Pk (x) = δlk
−1

1

∫ =1 for l = k, else 0 (10.20)

Due to the normalisation (8.13) of p we always have g0=1, and g1 = cosϑ  is the asymmetry
parameter. The gl  coefficients are determined by the last equation in (10.18). For Mie
scattering, the coefficients gl ,   l = 0 to lmax  are computed with the MATLAB function
mie_gi, see also mie_tetascanall.
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Examples
1. Isotropic scattering:   p(τ,µ,µ') = ϖ0 = constant; then the RTE becomes

µ dIν (τ,µ)
dτ

= Iν (τ,µ) - ϖ0

2
Iν (τ,µ') ⋅ dµ

−1

1

∫ ' (10.21)

There exist exact solutions for this problem (Chandrasekhar, 1960).

2. Simplest asymmetric case
p(µ,φ,µ',φ') = ϖ0(1+ acosϑ ) ; p0(µ,µ') = ϖ0(1+ aµµ') ; g1 = a /3 (10.22)

and all higher-order terms are 0, giving the RTE

µ dIν (τ,µ)
dτ

= Iν (τ,µ) - ϖ0

2
(1+ aµµ')Iν (τ,µ') ⋅ dµ

−1

1

∫ ' (10.23)

3. Rayleigh scattering:

p(µ,φ,µ',φ') = )cos1(
4

3 20 ϑ+
ϖ

;  g1 = 0, g2 =1/10; gl = 0; l > 2 (10.24)

4. Henyey-Greenstein phase function (Sobolev, 1975, p. 5):
This phase function is often used to mimic realistic situations for scattering in clouds:

 p(cosϑ ) =
ϖ0(1− g2)

(1+ g2 − 2gcosϑ )3 / 2 ; g = g1;  gl = gl (10.25)

5. Mie scattering:
Example: refractive index=3+0.1i, size parameter=2, highest order lmax =7, 60 angular values.
The command line

>> mie_gi(3+0.1i, 2, 7, 60)
returns

      s: [60x4 double]
      Q: [1.7022 0.7237 0.9786 0.6215 0.4188]
     gi: [1.0003 0.4190 0.1564 0.0247 0.0527 0.0134 0.0143 3.7967e-04]
    giR: [0.7122 0.2472 0.0283 -0.0204 0.0306 0.0180 0.0071 -3.5325e-04]
    giL: [0.2880 0.1718 0.1280 0.0451 0.0221 -0.0046 0.0072 7.3292e-04]

Here the first row consists of the vectors of the scattering intensities versus scattering angle.
The second row consists of the Mie efficiencies (Qe,  Qs,  Qa,  Qb ,  cosϑ ); the third row
shows the factors gl; l = 0, lmax ; the fourth and last rows contain the corresponding factors
glR  and glL   for R and L polarisation.

As another example we test the situation of Rayleigh Scattering with
>> mie_gi(2+0.01i, 0.05, 3, 60)

      s: [60x4 double]
      Q: [6.7264e-04 4.1712e-06 6.6846e-04 6.2478e-06 6.3619e-04]
     gi: [1.0002 6.3644e-04 0.1002 3.9185e-05]
    giR: [0.7501 3.6365e-04 8.5824e-05 1.2481e-07]
    giL: [0.2501 2.7280e-04 0.1001 3.9060e-05]

The required values of g0 =1, g1 = 0,  g2 = 0.1, g3 = 0  are closely obtained. Also note that g2

is due to the parallel polarisation pL = ϖ0 cos2 ϑ .
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11 Single Scattering

11.1 The radiative transfer equation and its solution
Situations where photons are only scattered once are called single scattering, or first-
order scattering. In some situations in nature (e.g. thin fog layer, haze), scattering may be
dominated by single scattering. This applies if the propagation path is < 1/γ s. However,
multiple scattering cannot easily be avoided.
The single-scattering solution is important as starting point for solutions of higher-order
scattering.
Again, as in Chapter 10, we neglect the emission term in the RTE, and we consider the
situation of a plane-parallel layer with illumination from above (Figure 11.1).

                                                                                                                     F
                     0

                       τ        dτ                               F⋅exp(-τ/µ0)                  Iν(τ,µ,φ)

                      τ1

Figure 11.1: Geometry for single scattering in a plane-parallel layer.

According to (10.15) the RTE with single scattering reads for the upward radiance

),,(),,(
φµτ=

τ
φµτ

µ ν
ν I

d
dI - Fν

4π
e−τ / µ0 p(τ,µ,φ,−µ0,φ0)  (11.1)

and for the downward radiance (with µ, µ0 >0)

),,(
),,(

φµ−τ=
τ

φµ−τ
µ− ν

ν I
d

dI
- Fν

4π
e−τ / µ0 p(τ,−µ,φ,−µ0,φ0) (11.2)

The last terms in (11.1-2) are the source functions for the two situations. Inserting them into
the formal solution (8.36-37) gives

),,0( φµνI = µτ−
ν φµτ /

1
1),,( eI + Fν

4π
e−τ / µ0e−τ / µ p(τ,µ,φ,−µ0,φ0)

0

τ1

∫ dτ
µ

(11.3)

),,( 1 φµ−τνI = µτ−
ν φµ− /1),,0( eI + Fν

4π
e−τ / µ0e(τ −τ1 ) / µ p(τ,µ,φ,−µ0,φ0)

0

τ1

∫ dτ
µ

(11.4)

Equations (11.3-4) are the solutions of the RTE for single-scattered radiation at the upper
and the lower boundary, τ=0 und τ1, respectively, of the layer. A simplification is obtained in
the standard problems where no diffuse radiation enters, see Equation (11.5) below. Then
(11.3) simplifies to

),,0( φµνI = Fν

4π
e−τ / µ0e−τ / µ p(τ,µ,φ,−µ0,φ0)

0

τ1

∫ dτ
µ

(11.3a)

and the same simplification applies to (11.4). Note however the product of exponentials in
the integrals. A certain difficulty associated with these functions is the divergence of the
arguments for grazing angles. This also means that the single-scattering approximation is
hard to realise over the extremely long propagation path.
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11.2 Scattering and transmission functions
In the standard problems the following boundary conditions apply (for the first one: τ1=∞):

),,0( φµ−νI = ),,( 1 φµτνI = 0 (11.5)

The scattering function follows from identifying the upwelling radiance in the definition
(10.3) for S with the radiance for single (11.3a), i.e. taking into account (11.5). If the layer is
homogeneous the phase function can be extracted from the integral in (11.3), giving

S(µ,φ,µ0,φ0)  = p(µ,φ,−µ0,φ0)IS (11.6)

where IS  is the integral over zenith opacity

IS = e−τ / µ0 ⋅ e−τ / µ

0

τ1

∫ dτ = exp −τ µ + µ0

µµ0

 

 
 

 

 
 

 

 
 

 

 
 

0

τ1

∫ dτ =
µµ0

µ + µ0

(1− e−τ1 / µ0 ⋅ e−τ1 / µ ) (11.7)

and for the transmission function (10.12) we get in the same way
T(µ,φ,µ0,φ0)  = p(−µ,φ,−µ0,φ)IT  (11.8)

IT = e−τ / µ0 ⋅ e(τ −τ1 ) / µ

0

τ1

∫ dτ  = µµ0

µ − µ0

(e−τ1 / µ − e−τ1 / µ0 ); µ ≠ µ0 (11.9a)

Behaviour of (11.9a) for µ - µ0  → 0  (Exercise: Check this formula):
IT → τ1e

−τ1 / µ0 ;   µ = µ0 (11.9b)

We conclude that the scattering and transmission functions are simply related to the phase
function:  S(τ1,µ,φ,µ0,φ0)  ⇔  p(µ,φ,-µ0,φ0),  T(τ1,µ,φ,µ0,φ0)  ⇔  p(-µ,φ,-µ0,φ0). Furthermore the
reciprocity of p means reciprocity of S and T, and vice versa.

11.3 Reflectivity and transmissivity

Reflectivity
The reflectivity can be computed from (10.6) using (11.6) and (11.7) for S.

r(µ0)= 
04

1
πµ

 S(µ,φ,µ0,φ0)dφdµ
0

2π

∫
0

1

∫ = 1
2

µp0(µ,−µ0)
µ + µ00

1

∫ (1− e−τ1 / µ0 ⋅ e−τ1 / µ )dµ   (11.10)

Here it is helpful to express p0 in the form of Equation (10.22), giving

r(µ0) =
ϖ0

2
(2l +1)gl

l= 0

∞

∑ Pl (−µ0) µPl (µ)
µ + µ00

1

∫ (1− e−τ1 / µ0 ⋅ e−τ1 / µ )dµ (11.11a)

If we consider the case of isotropic scattering, p(µ,φ,-µ0,φ0)=ϖ0, we have

r(µ0) =
ϖ0

2
µ

µ + µ00

1

∫ (1− e−τ1 / µ0 ⋅ e−τ1 / µ )dµ= ϖ0F2(τ1,−µ0)
2µ0

(11.11b)

Even this simplest situation leads to an inconvenient integral over µ. According to Tsang et
al., IEEE GE-20, p. 482-485 (1982), the integral can be expressed by a special function F2
related to the Exponential Integral En:

r =
ϖ0

2
1− e−τ1 / µ0 E2(τ1) − µ0 ln(1+

1
µ0

) + µ0e
−τ1 / µ0 E1(τ1) − µ0E1(τ1 + τ1 /µ0)

 

 
 

 

 
 (11.11c)

= 0.5ϖ0[1-µ0ln(1+1/µ0)] ;   for τ1→∞ (11.11d)
The expression (11.11d) follows from neglecting the exponentials in (11.11b). The functions
En are exponential integrals (Chandrasekhar (1960) Appendix1, and Abramowitz und Stegun,
Handbook of Mathematical Functions (1964)):
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∫
∞ −

=
z

n

t

n dt
t
ezE )( ;   recursion for n≥1: )()(1 zzEeznE n

z
n −= −

+ (11.12)

and for E1 a numerical expression was given in the above references. The functions Fn (here
for n=2), introduced by Chandrasekhar (1960) and by van de Hulst (1948), are defined by

Fn (τ,µ0) = µ0
x n−1

µ0 − x
1− exp −τ 1

x
−

1
µ0

 

 
 

 

 
 

 
 
 

 
 
 

 

 
 
 

 

 
 
 0

1

∫ dx (11.13a)

The equivalent representation is also used (van de Hulst, 1948) with s =1/µ; s'=1/ x , and it
is related to the En function:

Fn (τ,s) =
1− e−τ s'−s( )

s'n (s'−s)
ds'

1

∞

∫ = est En (t)dt
0

τ

∫ (11.13b)

The functions were programmed in MATLAB: E_function(n, τ ),F_function(n,µ,τ ).
Plots are shown in the following figures.

Figure 11.1: The functions
E1(x) (pointed) and
E2(x) (solid line) for
0<x<1 in
semilogarithmic
representation.

Figure 11.2: The function
F2(τ1,-µ0)/µ0  versus µ0

for  τ1.=0.1 (solid), 1
(pointed), 10 (dashed
line). Since all values
are in the range (0, 1),
the reflectivity is in the
range (0, 0.5).
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Transmissivity
The transmissivity is given by Equation (10.14), and the diffusely scattered part td is given by

td(µ0)= 
04

1
πµ

 ∫ ∫
π

µφφµφµτ
1

0

2

0
001 ),,,,( ddT = 1

2
µp0(−µ,µ0)

µ − µ00

1

∫ (e−τ1 / µ − e−τ1 / µ0 )dµ (11.14)

For isotropic scattering we get

td(µ0)= ϖ0

2
µ

µ − µ00

1

∫ (e−τ1 / µ − e−τ1 / µ0 )dµ= 
0

012
/

0
2

),(01

µ
µτϖ µτ− Fe (11.14a)

where the function F2 is with positive argument µ0. Expressed in exponential integrals we get

td(µ0)=
ϖ0e

−τ1 / µ0

2
−1+ e−τ1 / µ0 E2(τ1) − µ0 ln( 1

µ0

−1) + µ0e
−τ1 / µ0 E1(τ1) + µ0Ei(τ1 /µ0 − τ1)

 

 
 

 

 
 (11.14b)

The function Ei(x) is shown in the following figure.
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where γ=0.5772156649
is the Euler Constant.
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Figure 11.4: The function  F2(τ1,µ0)/µ0  for 3 values of τ1.

The total transmissivity, t(µ0,φ0),  including the directly transmitted flux, is

t(µ0) = td(µ0)+t0(µ0)= 01 /

0

0120
2

),(1 µτ−








µ

µτϖ
+ eF (11.16)
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and the emissivity and absorptivity of the layer follow from
e(µ0) = a(µ0) =1-r(µ0)-t(µ0) (11.17)

From Figure 11.4 it is obvious that the td  can be larger than t0, and sometimes t0 can even
be neglected.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1-r

t

X=cos(TETA)
Figure 11.5: Above: The functions, 1-r(µ0) and t(µ0) for τ1=0.1, ϖ0=0.3 und (solid) und ϖ0=1
(dotted). The emissivity is the difference. Below: same for τ1=1.
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11.4 Successive orders of scattering
Single-scattering is improved by including its solution at position τ

Iν1(τ,µ,φ) = Fν

4π
e−τ ' / µ0e−τ ' / µ p(τ ',µ,φ,−µ0,φ0)

τ

τ1

∫ dτ '
µ

=
Fν

4π
pµµ0

µ + µ0

(e−τ / µ0 −τ / µ − e−τ1 / µ0 −τ1 / µ )  (11.18)

Iν1(τ,−µ,φ) = Fν

4π
e−τ ' / µ0e(τ '−τ ) / µ p(τ ',µ,φ,−µ0,φ0)

0

τ

∫ dτ '
µ

 =
Fν

4π
pµµ0

µ + µ0

(1− e−τ / µ0 ⋅ e−τ / µ )       11.19)

in the source term. In this way we get the solution for second-order scattering. The process
can be iterated successively to higher orders, see Simmer (1994), and Thomas and Stamnes
(1999) who called the method Lambda iteration. For second-order scattering, see also
Chandrasekhar (1960) and van de Hulst (1948).
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12 Exact Multiple Scattering
Situations with scattering usually have to deal with multiple scattering effects, i.e. a
succession of at least two scattering processes. In this way, the radiation gets more and
more diffuse, loosing the memory of the original direction and polarisation. The exact shape
of the phase function gets less important than for single scattering. However exact solutions
for multiple scattering are rare and are limited to the simplest phase functions
(Chandrasekhar, 1960). Due to the reduced p sensitivity, these exact solutions are
sometimes used as approximations for more complicated situations (Kokhanovsky, 2001).

12.1 Exact solution of Standard Problem 1 for isotropic scattering
Standard Problems 1 and 2 can be solved exactly in the case of isotropic scattering, and for
a few other situations (Chandrasekhar, 1960). Here we will discuss Standard Problem 1 for
the isotropic case. The solution is found through a principle of invariance, leading to an
integral equation for the scattering function S.

Principle of invariance
Adding (or removing) a layer of the same medium to (or from) a half-space does not change
the escaping radiation Iν(0,µ), and also the scattering function S(µ,φ,µ0,φ0) remains the same.
This is the principle of invariance (Figure 12.1).

Sa(µ,φ,µ0,φ0)           =          Sb(µ,φ,µ0,φ0)

Figure 12.1: Illustration of the principle of invariance for a half-space medium.

Integral equation
The application of the principle of invariance to an infinitesimally increased half-space with
isotropic scattering leads to an equation for the scattering function

S(µ,φ,µ0,φ0) = S(µ,µ0) = )()( 0
0

00 µ⋅µ
µ+µ

µµϖ HH (12.1)

where H(µ) is determined by either one of the two following integral equations
(Chandrasekhar, 1960, § 33, 38):

∫ µ
µ+µ

µ
µµ

ϖ
+=µ

1

0

0 '
'
)'()(

2
1)( dHHH (12.2)

1
H(µ)

= 1− ϖ0 +
ϖ0

2
µ'H(µ')
µ + µ'

dµ'
0

1

∫ (12.3)

A derivation of Equation (12.2) is given in Section 12.4. Furthermore H(µ) has the following
property (from Chandrasekhar, § 38):

∫ ϖ−−=µµ
ϖ 1

0
0

0 11')'(
2

dH (12.4)

The solution of (12.2) is found by iteration, starting with H=1. This value (solution for single
scattering for τ1→∞) is inserted in the integrand of (12.2), then resolving for H gives:
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1
H(z)

=1−
ϖ0z

2
H(µ)
z + µ

dµ
0

1

∫ (12.5)

As a result we get an improved value of H(z); this improved function is again inserted in the
integrand of (12.5), and the process is repeated until we get a stable solution. Results are
shown in the following figure.
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Figure 12.2: The function H(µ) for isotropic scattering and for 3 values of ϖ0 = 0.1, 0.8, 1.

Improved starting functions can be found in Chandrasekhar (1960), § 22-27. All H values
range between 1 and approximately 3. Highest values are found for vertical incidence and
ϖ0 =1.

Reflectivity and emissivity
The reflectivity of the half-space can be directly expressed with the H function, using (12.3):

r(µ0) = 
04

1
πµ

 ∫ ∫
π

µφφµφµ
1

0

2

0
00 ),,,( ddS = µ

µ+µ
µµµϖ

∫ dHH 1

0 0

00 )(
2

)(

= )(11 00 µ⋅ϖ−− H      (12.6)

and thus the emissivity e =1-r becomes
e(µ0) = )(1 00 µ⋅ϖ− H (12.7)

In contrast to the single-scattering solution (11.11d), Equation (12.6) correctly converges to
1, and (12.7) to zero, respectively, for ϖ0 →1 (no absorption). See also Figures 12.3-5.

Backscattering
The normalised backscatter cross section (normalised by illuminated area) is simply given by

σ0= S(µ0,µ0) = )(
2 0

200 µ
µϖ H (12.8)
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Figure 12.3:
Emissivity e
versus µ0 for 4
different values of
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12.2 Exact solution of Standard Problem 2 for isotropic scattering

The S and T functions
Also Standard Problem 2 was solved exactly by Chandrasekhar (1960) using principles of
invariance (§ 49-55). Here we present the solution for isotropic scattering.

S(τ1,µ,φ,µ0,φ0) = S(τ1,µ,µ0) = [ ])()()()( 00
0

00 µµ−µµ
µ+µ

µµϖ YYXX  (12.9)

T(τ1,µ,φ,µ0,φ0) = T(τ1,µ,µ0) = [ ])()()()( 00
0

00 µµ−µµ
µ−µ

µµϖ YXXY (12.10)

The functions X(µ) and Y(µ) are obtained from the coupled integral equations:

∫ µ
µ+µ

µµ−µµµϖ
+=µ

1

0

0 '
'

)'()()'()(
2

1)( dYYXXX = ∫ µ
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µµτ+
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')',,(
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∫ µ
µ−µ

µµ−µµµϖ
+=µ µτ−

1

0

0/ '
'

)'()()'()(
2

)( 1 dYXXYeY = ∫ µ
µ

µµτ+µτ−
1

0
1

/

'
')',,(

2
1

1
dTe (12.12)

Comparison with single scattering gives a first approximation to X(µ) and Y(µ):
X(µ)=1, Y(µ)=exp(-τ1/µ) (12.13)

and if with inclusion of second-order scattering (Chandrasekhar, p. 216)
X(µ)=1+0.5ϖ0F1(τ1,-µ), Y(µ)=exp(-τ1/µ)[1+0.5ϖ0F1(τ1,µ)] (12.14)

On the other hand, for τ1→∞, we have  X(µ) → H(µ), Y(µ) → 0.

Integral properties

∫ =µµ
ϖ 1

0

0 )(
2

dX
21

0

0
0 )(

2
11












µµ

ϖ
+ϖ−− ∫ dY (12.15)

used to test the functions X(µ) und Y(µ).

Reflectivity and transmissivity
The reflectivity r(τ1,µ) of the layer follows from (10.6) and (12.9)

∫ µ⋅µ
µ+µ

µµ−µµϖ
=µτ

1

0

0
1 ''

'
)'()()'()(

2
),( dYYXXr  = 1-[(1-x0)X(µ)+y0Y(µ)] (12.16)

and the transmissivity, t(µ0,φ0)=t0(µ0,φ0)+td(µ0,φ0), follows from (10.14) and (12.10)

=µτ ),( 1t µτ− /1e + ∫ µ⋅µ
µ−µ

µµ−µµϖ 1

0

0 ''
'

)'()()'()(
2

dYXXY = y0X(µ) + (1-x0)Y(µ) (12.17)

The last expressions in (10.16) and (10.17) are from Chandrasekhar (1960), p. 184, where x0

and y0  are the zero-order moments of  ϖ0X  and  ϖ0Y :

∫ µµ
ϖ

=
1

0

0
0 )(

2
dXx  ; ∫ µµ

ϖ
=

1

0

0
0 )(

2
dYy (12.18)

and finally the emissivity is given by:
=µτ ),( 1e 1 - r - t = (1-x0-y0)⋅[X(µ)-Y(µ)] (12.19)
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Figure 12.6: The functions X(µ) and Y(µ) for  τ1 =1 and ϖ0 = 0.5. The pointed lines show the results after the first
iteration, starting with (12.13), and the solid lines are results after the third iteration.

0 XY           2 X1    3 Y1    4 X2    5 Y2    6 X3    7 Y3

-------------------------------------------------------------
27 x0,y0       0.2878  0.0618  0.2894  0.0639  0.2898  0.0628
28 x0test      0.2902          0.2900          0.2901

Table 12.1: x0, y0 and  x0test  of Eq.
(12.15) for the first 3 iterations of
X(µ) and Y(µ) for τ1 =1 and
ϖ0 = 0.5

Figures 12.6-7 show the example with τ1 =1 and ϖ0 = 0.5  with values x0=0.290, y0=0.063 as
shown in Table 12.1. From Equations (12.15-18) we get r, t  for  τ1 =1, ϖ0 = 0.5, as shown in
the following Figure 12.7. As a general observation it is noted that r and t increase whereas e
decreases from the single- to the multiple-scattering solution.
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Figure 12.7: Transmissivity and 1- reflectivity versus cosine of incidence angle for a layer with isotropic scattering,
τ1 =1 and ϖ0 = 0.5  for single and multiple scattering.
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12.3 Discussion
For isotropic scattering the exact solution is simple, especially for a half-space. The results
show the most important behaviour of multiple scattering, especially the "late" convergence
toward a white body for ϖ0 →1 (Figures 12.4 and 12.5). Unfortunately the results are not
directly applicable to scattering problems with strongly anisotropic phase functions. With
efforts it is possible to transform an anisotropic scattering problem to a more isotropic one.
The Delta-Eddington Approximation is an example (Joseph et al. 1976, Meador and Weaver,
1980, Thomas and Stamnes, 1999). Such transformations improve the applicability of the
exact theory.

The computation of the X and Y functions is more delicate than computing the H function.
Get your own experience!

12.4 Appendix: Derivation of Equation (12.2)

                                                                   z
                                                                    θ0

                                Iν(0,µ)                   πF(-µ0)
              0                                                      0

                       t0πF             Iν(τ,-µ)                     Iν(τ,µ)

             τ

Boundary condition:

  Iν(0,-µ)=0 (A1)

Principle of invariance: Adding a layer (0, τ) to a half-space with the same properties does
not change the scattering function S(µ,µ0).
First we have at the surface of the half-space

Iν(0,µ) = F
4πµ

S(µ,µ0) (A2a)

and after addition of a layer of optical thickness τ , the radiance, now at depth τ  must still be
expressible by S , but now also including diffuse incident radiation:

Iν(τ,µ)= Fe−τ / µ0

4πµ
S(µ,µ0)+

1
2µ

S(µ,µ') ⋅ Iν (τ,−µ')dµ'
0

1

∫ (A2b)

where the first term is due to scattering by the medium below level τ  of the reduced direct
beam, and the second term is due to scattering, again by the half-space below level τ  of the
diffuse incident radiation. On the other hand, the RTE also describes the radiance at level τ ,
and if averaged over azimuth (without emission), for p=p0=ϖ0, we get:

µ dIν (τ,µ)
dτ

= µ ∂Iν (τ,µ)
∂τ

= Iν (τ,µ)− Jν (τ,µ) (A3)

=µτν ),(J ϖ0

2
Iν (τ,µ') ⋅ dµ

−1

1

∫ '+ Fϖ0

4π
e−τ / µ0  (A4)

Multiplication of (A2b) with µ, and taking the derivative with respect to τ at τ=0 (where
Iν (0,−µ)= 0) gives an equation similar to the RTE:

04
),0(

µ
−=

τ∂
µ∂

µ ν FI
S(µ,µ0)+ ∫ µ

τ∂
µ−∂

⋅µµ ν
1

0

'
)',0(
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2
1 d

I
S (A5)



90

If we eliminate the derivatives in (A5) we get an equation for the S function. To this end we
use Equations (A3) and (A4):
a) Left-hand side of (A5):

),0(),0(
),0(

µ−µ=
τ∂

µ∂
µ νν

ν JI
I

= F
4πµ

S(µ,µ0) - 
Fϖ0

4π
 - ")",0(

2

1

0

0 ∫ µ⋅µ
ϖ

ν dI =

= F
4πµ

S(µ,µ0)-
Fϖ0

4π
- Fϖ0

8π
S(µ",µ0) ⋅

dµ"
µ"0

1

∫ (A6)

b) Right-hand side of (A5), derivative in the integrand:
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∫  (A7)

Equations (A6) and (A7) inserted in (A5) leads to
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where H(µ)
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Insertion of  S  of (A8) in (A9) leads to the Integral equation (12.2):
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13 Approximate Solutions for Multiple Scattering
Approximate solutions of the RTE are obtained if the number of propagation directions is
limited. In this way the radiative transfer equation is replaced by a system of linear differential
equations (Chandrasekhar, 1960, starting with §20). Most popular are the Two-Stream (or
Two-Flux) Models going back to Schuster (1905) and Kubelka and Munk (1931). A good
overview was given by Meador and Weaver (1980), and these models are also well
described in Thomas and Stamnes (1999) and in a different way by Ishimaru (1978).

In certain situations, the scattering is indeed limited to two directions, e.g. if the medium
consists of plane-parallel slabs of a dielectric material. Then the two-stream model is an
exact one. This situation will be discussed here as a primitive snowpack scattering model.

13.1 A simple snowpack/cloud reflectance and transmittance model from
microwaves to ultraviolet: The ice-lamella pack
From: C. Mätzler, Journal of Glaciology, J. Glaciology, Vol. 46, No. 152, pp. 20-24 (2000).

Abstract
Modelling the reflectance (reflectivity) and transmittance (transmissivity) of volume scatterers is delicate.
Slightly different approaches can lead to different results, thus making comparisons difficult. Here a
simple, analytic multiple-scattering model is presented as a possible reference for comparisons and also
for better understanding the physics involved. The model quantifies the transmittance and reflectance of
homogeneously distributed scatterers within slabs of any thickness. The simplicity of the model is given
by the one-dimensional geometry, a system consisting of freely arranged ice lamellae in air. Although
direct applications will be limited, the model gives a spectral description of ice clouds and snowpacks
over a very broad spectral range from microwaves to the ultraviolet. In addition to the transmittance and
reflectance the model also gives the emittance through Kirchhoff's law. Comparison with other models
shows, on one hand, agreement in the spectral description when compared with current snow models,
and on the other, some quantitative inconsistencies between all of them. It appears that the lamella
pack produces the same optical spectra as an average snow model with spherical ice grains whose
radius corresponds to about the lamella thickness whereas microwave spectra appear to be slightly
different.

The model
Figure 1: Pack of freely arranged ice lamellae of

thickness d packed to a volume fraction v
(0<v<1), on average there are N lamellae per
meter depth, representing a model of a cloud or
of a snowpack. Freely arranged lamellae can be
in direct contact (second from bottom), thus
increasing the average thickness.

Expressing the number N of lamellae per meter depth by the volume fraction v and by the lamella
thickness d  we have

N = v/d (1)
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Reflection at a single ice lamella:
For a dielectric lamella with negligible losses, the reflectivity is given by the Airy formula (Born and
Wolf, 1980)

r = 2
1 2

1 2 21
1
2

1
r

P
r r P

−
+ −

cos( )
cos( )

(2)

r1 Fresnel reflectivity (air-ice), P one-way phase through the lamella. For vertical incidence

r1 =
n
n

−
+

1
1

2

(3)

and
dknP '= (4)

where n = n' + i⋅n" is the complex refractive index of ice and k the vacuum wave number.
The average reflectivity of a lamella:
Now, since d is assumed to be slightly different for different lamellae, the phase terms in (2) are
smeared out when averaged over many lamellae, except for very small values of P. Coherent
superpositions of reflections at different lamellae disappear due to the variable distance between them,
i.e. by the free arrangement of the lamellae. Noting that r1<<1, the denominator of (2) can be
approximated by 1. The average lamella reflectivity rav can then be written as

rav = 
4 3 4 2 356
2 2 356
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r P P
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sin ; / .
; .

< =
≥





π
(5)

For a small phase, Equation (5) gives the coherent reflectivity of the lamella through the first maximum
at one quarter wavelength, and it provides a continuous transition from the coherent to the incoherent
situation at larger thickness.
The Two-Flux scattering coefficient:
The radiative transfer equation decays into a pair of first-order differential equations identical to the ones
used in the two- flux model. The up- and downwelling intensities, I1(z) and I2(z), respectively, can be
described by (emission being omitted here, but later included)
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, ( )= + −mγ γ (6)

For N lamellae per meter depth the scattering coefficient γs is given by γs = Nrav. However, due to the
free arrangement, this quantity is reduced by the probability (1-v) of two adjacent lamellae being in
contact, thus γs is given by

γs = N(1-v)rav = 
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(7)

The contacting lamellae have an increased thickness, therefore we can introduce the average thickness
as dav = d/(1-v). Thus (7) can also be expressed by
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The reason why d was introduced is the fact that d is the correlation length of the medium. With
increasing v more and more lamellae touch adjacent ones until v approaches 1 when the medium
consists of thick ice plates, separated by a few thin air gaps of thickness d.
The two-flux absorption coefficient:
Small dielectric losses can be included by the absorption coefficients of ice γa,ice and air γa,air. The
absorption coefficient γa of the lamella model is

γa =  v γa,ice + (1-v) γa,air  (8)

In case of high dielectric losses, absorption happens locally within the topmost lamella (9').
Reflectance, transmittance and emittance of the slab:
Without atmospheric absorption, slab height h above a non-reflecting background. The reflectivity r, and
the transmissivity t of the slab are (using the reflectivity r0 for infinite thickness, the transmission function
t0 and the damping coefficient γ2 )

r = r
t

r t0
0
2

0
2

0
2

1
1

−
−

; and     t = t
r

r t0
0
2

0
2

0
2

1
1

−
−

; γa,iced < 1 (9)

where

t h0 2= −exp( )γ ;    r s

s a
0

2
=

+ +
γ

γ γ γ
 ;     γ γ γ γ2

2 2= +a a s (10)

Exception for opaque lamellae; only incoherent reflections at the 3 topmost air-ice interfaces (without
multiple scattering):

r = r1(1+2exp(-2γa,iced));     t = 0;  γa,iced > 1 (9')

Finally, the emissivity e of the slab is obtained from Kirchhoff's law, for absorptivity a:
a = e =1-t-r  (11)

and the last equation follows from energy conservation. Note that the emissivity of the whole (slab and
background) system is given by e0 = 1- r = e+t.

Results and Discussion
For a sufficiently deep pack, the reflectivity is only a function of the ratio x = γs/γa:

r = r
x

x x0 1 1 2
=

+ + +
 (12)

r0 ≅ 1-
2
x

(13)

The often used Approximation (13) is approached for large values of x, e.g. for snow at visible
wavelengths. Inserting x from (7') and (8) for  γa,air = 0 and for large P we get

x = 
2 1r

da ice avγ ,
(14)

and thus from (13) we find
r K da ice av0 1≅ − γ , (15)

a well-known approximation for strong volume-scatterers (e.g. Bohren, 1987). Here, K is given by r1-1/2;
thus for lossless ice we get from (3):

1'
1'

−
+

=
n
nK (16)
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For n'=1.33 we get r1=0.020 and K=7.06. According to an early snowpack model (Bohren and
Barkstrom, 1974), the reflectance of a deep snowpack can be written as

r Da ice BB0 1 596≅ − . ,γ (17)

where DBB is the sphere diameter of the Bohren and Barkstrom Model. This result agrees with (15) by
choosing

dav = 0.61DBB (18a)

Another comparison can be made using the snow model of Wiscombe and Warren (1980). Reflectivities
of thick snowpacks computed with this model for different grain diameters DWW were taken from
Marshall (1989) and from Sergeant et al. (1993) at a wavelength of 1µm, and the results are shown by
the data on the upper curve of Figure 2. The curve represents Equation (12) for  x=4.915mm/DWW.
Comparing this result with (14) for r1=0.0171 (n'=1.301) and γa,ice=0.024/mm we find x=1.42/dav, thus
agreement is achieved with the lamella model if

dav = 0.29DWW                    (18b)

The lower curve in Figure 2 represents the model of De Haan et al. (1987), with x =2.69mm/DDH.
Agreement with the lamella model is achieved if the De Haan grain diameter DDH is given by

dav = 0.53DDH (18c)

Figure 2: Decrease of the
reflectance r0 of pure snow
(wavelength = 1 µm) with in-
creasing grain diameter D (in
mm) of spherical ice grains.
Data points (diamonds) along
the upper curve are computed
with the model of Wiscombe and
Warren (1980), the curve
represents Equation (13) with x
= 4.915mm/D. The lower curve
represents (13) with x
=2.69mm/D, the data points
were computed by Sergeant et
al. (1998), using the model of De
Haan et al. (1987).
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Comparison of the three equations (18a,b,c) indicates that different snow reflectance models lead to
slightly different results (all within about a factor of 2) with respect to the grain diameter. On average the
lamella thickness is about equal to the grain radius.
Another comparison was made with data of the NASA-ASTER spectral library
(http://asterweb.jpl.nasa.gov). The results are shown in Figure 3 for three different effective grain sizes
DAS=0.024, 0.082 and 0.174 mm, respectively. The lamella thickness, d, was assumed to be equal to
DAS, and a constant ice-volume fraction v=0.1 was assumed. The spectral ice data were taken from
Warren (1984). According to the description of the ASTER library, the ASTER spectra were modelled
based on broadband measurements made by Salisbury et al. (1994) at the John Hopkins University IR
Laboratory (2-14µm). The agreement between the spectra of lamella-pack and the ASTER snowpack is
excellent. Especially at wavelengths below 1.4µm, the ASTER data and the lamella-pack model give
almost indistinguishable results. From this coincidence it can be concluded that the ASTER grain size
corresponds to d  for v=0.1. In terms of dav we have
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dav = 1.1 DAS (18d)
Unfortunately, in the ASTER library the grain size DAS is not clearly defined. After discussion with the
authors of the database it is probable that ASTER grain size means radius. In fact, Wald (1994) used
radius and grain size as synonyms.
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Figure 3: Reflectance of thick snowpacks versus wavelength between 0.2 and 2.8 µm for 3 effective grain sizes:
0.024 mm (uppermost pair of curves), 0.082 mm (middle pair), and 0.174 mm (lowest pair). The smoother
curves represent the lamella-pack model with the lamella thickness equal to the grain size for v=0.1, and the
noisier curves represent data from the ASTER spectral library.

From updated spectral information on the complex refractive index of pure water ice (Warren,
1984; Mätzler, 1998b), microwave to ultraviolet reflectivity and transmissivity spectra were
computed for given packs. Examples of reflectance and transmittance data of two 10 cm
thick snowpacks at a temperature of 266K are shown in Figures 4 and 5, and Figure 6 shows
the spectra of an ice cloud (shortest wavelength is 200nm). The corresponding reflectivity
spectra for infinite thickness are shown as well. The computations are based on Equations
(9), (9') and (10). Note that at lower frequencies where the phase P is small, we obtain a
reflectivity which increases with increasing k2d, i.e. with frequency, thus the emissivity
decreases as is observed for dry snow in the microwave range.
In Figures 4 and 5 the reflectivity in the 2 to 100 GHz range is compared with the results of the recent
Microwave Emission Model of Layered Snowpacks, MEMLS, (Wiesmann et al. 1998, Wiesmann and
Mätzler 1999) for the same thickness, density, temperature and for correlation lengths pMEMLS of the
isotropic heterogeneity fitted to the present data. It is found that pMEMLS is significantly larger than d, and
its influence on the scattering coefficient is stronger than for d. Indeed, three-dimensional Rayleigh
scattering increases with k4(pMEMLS)3, whereas in the one-dimensional geometry scattering increases
with k2d. Also the shape of the MEMLS spectra (Figures 4 and 5) are slightly steeper than in the present
model. Thus there is a functional difference between scattering in one- and 3-dimensional heterogeneity
at microwave frequencies, whereas at optical frequencies both types of heterogeneity produce coinci-
dent spectra and coincident grain-size dependence.
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Figure 4: Radio to UV spectra of transmissivity t and reflectivity r of a thin snowpack consisting of a 10 cm deep

ice-lamella pack with d=0.05mm, v=0.1. Also shown is the reflectivity r0 of the same snow, but at infinite
thickness. The data points labelled + are MEMLS results of  r for the same snow density, thickness and
temperature (266K), but with pMEMLS = 0.2 mm.
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Figure 5: Radio to UV spectra of transmissivity t and reflectivity r of a thin snowpack consisting of a 10 cm deep

ice-lamella pack with d=0.02mm, v=0.1. Also shown is the reflectivity r0 of the snow at infinite thickness. The
data points labelled + are MEMLS results of  r for the same snow density, thickness and temperature (266K),
but with pMEMLS = 0.12mm.
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Figure 6: Radio to UV spectra of transmissivity t and reflectivity r of an ice cloud consisting of a 100 m deep ice-
lamella pack with d=3µm, v=2⋅10-6. Also shown is the reflectivity r0 of the same cloud, but at infinite thickness.
Absorption in moist air was neglected.

A comparison between the two correlation lengths d and pMEMLS follows from geometrical
considerations, referring to the specific surface s=S/V of a granular medium where S is the total surface
of particles within volume V. In the 3-dimensional case, the equation of Debye et al. (1957) applies:

s v v pMEMLS= −4 1( ) / (19)
whereas in the one-dimensional case of  Figure 1, s is given by

s v v d= −2 1( ) / (20)
Comparing (19) and (20) gives

pMEMLS=2d (21)
In view of Equation (21) the discrepancy in Figures 4 and 5 between pMEMLS and d is not too severe.
For the general behaviour of the model as seen in Figures 4 to 6, the following can be noted: There is a
broad maximum of the infinite reflectivity r0 in the 10 to 1000 GHz range. This maximum decreases with
decreasing d whereas the maxima increase at short wavelengths. This property is intrinsic to volume
scattering when the wavelength changes from larger to smaller than the characteristic size of the
scatterers. The reason why the maximum of r0 is so flat over the 10 to 1000 GHz range is the common
behaviour of γa and γs in this frequency range, both increasing with the square of frequency. The
behaviour is different below 10 GHz where γa  converges to a frequency independent value, thus leading
to an increase of r0 with frequency squared.
The transmissivity shows a high-frequency cut-off near 100 GHz for the 10 cm snowpacks and near
1000 GHz for the ice cloud. The difference is mainly due to the different water-equivalent depth
decreasing from 10 mm for the snowpack to 0.2 mm for the cloud. The transition from Equation (9) to
(9'), from transparent to opaque lamellae, takes place deep within the cut-off region, at frequencies
above 4000 GHz, and returns to (9) again at a wavelength below 3µm (f >105 GHz). At the transition
point the reflectivity (9') is larger than for (9), leading to visible jumps in the spectra. The transition from
incoherent to coherent lamella reflections, as expressed by P=3π/4 in Equation (7), occurs in the
decreasing part of r, close to 1000 GHz in Figure 4 and near 3000 GHz in Figure 5 (see the slight
change in slope).

Conclusions
A simple, physical, multiple-scattering model was presented for describing the reflectance and the
transmittance (Equations 9 and 10) over a very large frequency range in a volume-scattering medium,
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such as snowpacks and clouds, consisting of ice and air. The one-dimensional geometry consists of a
slab of freely arranged, horizontally aligned ice lamellae of a given original thickness d. Due to
occasional contacts between adjacent lamellae, the average lamella thickness dav is slightly larger than
d. Either one of these parameters describes the structure together with the ice-volume fraction v. It was
shown that the short-wave reflectance spectra up to a wavelength of 2.8µm coincide with snow spectra
modelled for spherical ice grains using Mie theory for grain radii being about equal to dav. Also the
decrease of the reflectance with increasing grain size is the same in both types of models. A certain
discrepancy between different snow reflectance models was observed (Equations 18a-d).
Concerning the microwave range there is no general agreement between the ice-lamella model and
scattering in a 3-dimensional heterogeneity. Nevertheless the present one-dimensional geometry gives
an approximate agreement with reflectivities computed with a snow-emission model if the correlation
length pMEMLS of the 3-dimensional medium is properly adjusted to d. By using the information available
on the complex refractive index of ice, very broad-band spectra for snowpacks and clouds can be
constructed from the formulae presented here. Due to the simplicity of the ice-lamella pack, this model
could work as a reference in the development, validation and improvement of more elaborate ones.
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13.2 Comparison of lamella pack with spherical scatterers
The following comparison of optical snow spectra is from:
C. Mätzler, "Relation between grain size and correlation length of snow", Session C04 Cryosphere: The role of

microstructure and layering on the physical properties, metamorphosis, and deformation of snowpacks, AGU
Fall Meeting, San Francisco, CA, Dec. 2002.

Different shapes of scatterers in Figures 1a and 1b with the same specific surface show similar
reflectance and transmittance spectra, see Figures 2a and 2b.

 Fig. 1a: Stack of irregularly spaced ice lamellae Fig. 1b: Pack of irregularly spaced spheres.
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Figure 2a: Albedo (reflectivity) a and transmittance
(transmissivity) t versus wavelength ( µm ) of a 20 cm
deep snowpack, density 100kg/m3, incidence angle
53°. Comparison of spheres (D=0.8mm) with lamella
pack for lamella thickness d=D/3; blue: Mie-Delta-
Eddington model of Wiscombe and Warren (1980),
black: lamella model of Mätzler (2000).

Figure 2b: As Figure 2a, but for a deep snowpack with
illumination adapted to the respective geometry: vertical
incidence for lamella pack, diffuse illumination for pack
of spheres. The spectral albedos of the two situations
agree almost perfectly.
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