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1 Introduction

This document discusses some terminology necessary to extract chemical/physical
information from spectral line observations. Although this is all very basic
material, there are at least two astronomers who were often confused about
these things. This little guide discusses quantities like brightness tempera-
tures, antenna temperatures, beam dilution, line centre optical depth, flux
density, Sobolev approximation, excitation temperature, column density.

The general goal is to give the practical steps to compare observations
with some types of model calculations. The RADEX software is one of the
simplest methods to constrain abundances and physical conditions from ob-
servations, and often serves as a useful guideline for using more complex ra-
diative transfer programs. This document tries to explain what assumptions
are implicitly made in RADEX, what else can be done, and how we compare
this with our data.

The notation generally follows that used in Rybicki & Lightman (1),
chapter 1, and Elitzur (2), chapter 2.

2 Basic radiative transfer

2.1 Fluxes and intensities

We start by defining the necessary quantities. This is most easily done in
terms of energy. When a certain amount of energy is received at the telescope,
it makes sense to divide these ergs by observing time, collecting area and
bandwidth in order to be able to compare with somebody else who has a
smaller telescope (but more observing time). So we define flux density:

Fν =
dE

dν dA dt

Some people tend to call this simply flux, but flux is defined as F =
∫

Fνdν.
Flux density is often expressed in Jansky (1 Jy = 1 · 10−23 erg cm−2 Hz−1).

The flux F is straightforwardly connected to the source luminosity by

F =
L

4π D2

where D is the distance to the object. So we have a direct expression of the
energy production of our source. This is, however, of limited use as it does
not tell us anything about densities, temperatures and chemical abundances,
especially when we deal with line radiation that may saturate. To get this
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information, we have to follow the radiative transfer of separate spectral lines.
This is most easily done by using intensities.

Intensities are defined as

Iν =
dE

dν dAdt dΩ cos θ
.

In fact, we should call Iν the specific intensity to make a distinction with I,
but most people however refer to Iν when they use the word intensity. Here
Ω is the solid angle the source subtends and θ equals the angle between dA
and the ray for which we measure Iν . Most telescopes are designed cleverly
enough to have this angle at 90◦ for a source in their field of view, so we can
usually take cos θ = 1, but it is kept for consistency. This implies

Fν =
∫∫

Iν cos θ dΩ.

The difference between flux density and specific intensity is clearly illus-
trated when we study a source of radius R at distance D. Let’s assume the
source produces a constant amount of Lν photons of interest at its surface.
Then we already know

Fν =
Lν

4π D2

so that the flux is independent of the size of the source, but does depend on
the distance to the object. However the intensity is

Iν =
Fν

∆Ω
=

Lν

4R2

which depends on the true size of the object, but is now independent of
the distance! Since the integral

∫∫
dΩ = π we understand that the source

intensity is πFν,surface. The fact that Iν is constant along a free travelling ray
makes it easy to express radiative transfer in terms of intensity. But let’s
look at antenna temperatures first.

2.2 Antenna temperatures

The power received by the radio telescope from a source (in erg s−1) can be
expressed as

P source =
1

2
AηA(F on

ν − F off
ν )∆ν

where the factor 1
2

originates from the fact that we detect a single polarisa-
tion – see Kraus (3). We have subtracted out the background contribution.
This power can be expressed in terms of the temperature of a resistor in
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the telescope (and this is convenient as we can calibrate the telescope by
switching on a hot load in the receiver).

P source = k TA ∆ν

(note that if we had not beam-switched this would define the Tsys). We can
express TA in terms of flux by working these formulas around. In general
there are quite a number of steps to do this. For instance, the calibration of
the atmospheric absorption leads to T ′

A. There is quite some confusion about
how different quantities are called – see Kutner & Ulich (4) for a consistent
description. Without following all the details we denote TA/ηA = Tmb the
main beam antenna temperature, which is also called T ∗

R. This can now
be related to the true TR, the radiation temperature in the Rayleigh–Jeans
approximation, if we know the quantitative effect of the beam convolution
with the source. This depends not only on whether the source is resolved or
not (see below) but also on how much radiation reaches the receiver through
the sidelobes. Basically Tmb or T ∗

R are as close as one can get to the radiation
intensity without detailed knowledge about the beam of the telescope and
the intensity distribution on the sky.

This main beam temperature is related to the flux observed by the tele-
scope

Tmb =
A

2k
F source

ν .

where F source
ν = F on

ν − F off
ν . The telescope receives this power from a solid

angle defined by the beam shape of the telescope. Let’s define a solid angle
∆ΩA = λ2/A, then we can write this flux in terms of intensities.

For practical purposes it should be remembered that for a two dimensional
gaussian beam holds

∆Ω =
∫ ∞

−∞

∫ ∞

−∞
e
− x2

2σ2
x
− y2

2σ2
y dy dx,

where we express the σx and σy in terms of FWHM ∆x and ∆y as

σ =
∆

2
√

2 ln 2

so we use
∆Ω = (∆x ∆y)

π

4 ln 2
.

The intensities which will now be introduced should be used with caution.
They are actually the average intensities over the beam. Only for resolved
sources, these equal the source intensities, otherwise they are lower limits
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to the source intensities. This fact that the inferred temperature is just a
lower limit to the actual source brightness is called beam dilution. One could
quantify this with a beam filling factor but we prefer

Tmb ≤ c2

2ν2k
I source
ν

or
Tmb ≤ TR,

where for a resolved source the equal sign holds and TR is the Rayleigh–
Jeans equivalent radiation temperature. Notice that the the Rayleigh–Jeans
approximation is implicitly made above. So even in the regime where it
does not hold, you will still get a RJ equivalent radiation temperature at the
telescope. After we have discussed radiative transfer we will get back to this
TR and discuss its relation with the brightness temperature and the physical
temperature of the emitting medium.

2.3 Radiative transfer

The fact that Iν is constant along the line of sight makes it very easy to write
radiative transfer in terms of intensity.

dIν

ds
= −αν(~r)Iν + jν(~r)

Other notations use for αν (the absorption coefficient in cm−1) κν (=αν/ρ in
cm2 gr−1, with ρ the mass density in gr cm−3). Both are frequently expressed
as αν = niσν where σν is the absorption cross section in cm2. Instead of jν

one often finds εν , the (volume) emission coefficient. Note that here it has
already been assumed that the spontaneous emission is isotropic, i.e. does
not depend on the direction we are studying. This is OK for spectroscopic
purposes.

We can rewrite this equation by defining the optical depth dτν = α(~r)ds
so that we can calculate the optical depth at a point s along the ray as

τν(s) =
∫ s

s0

α(s′)ds′.

Here optical depth is measured along the ray. Sometimes the minus sign
of the radiative transfer equation is incorporated in the definition of τν and
then the optical depth is measured from the observer. For the τν over the
total depth of the source there is of course no difference.
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Thus we can write the radiative transfer in the following form

dIν

dτ
= −Iν + Sν(~r),

where the source function is the ratio of emission to absorption coefficient.
We can write the formal solution to this

Iν(τν) = Iν(0)e−τν +
∫ τν

0
e−(τν−τ ′ν) Sν(τ

′
ν)dτ ′ν .

Since we are interested in doing spectroscopy, let’s write the αν and jν in
terms of Einstein coefficients. A complication is that we have to worry about
the line shape. For instance the Einstein A21 gives us how often spontaneous
emission occurs from the upper (2) to the lower (1) level in a single atom,
but we want to express jν in units of [erg cm−3 ster−1 Hz−1], because it is an
intensity. So we write

jν =
hν0

4π
n2A21φ(ν).

The 4π term is due to the assumption that the emission is isotropic, and φ(ν)
takes care of the line shape. It is a function for which must hold

∫
φ(ν)dν = 1.

The most simple expression for φ(ν), which is often used, is a rectangle of
value 1/∆ν and width ∆ν around some ν = ν0(vobs/c). Of course a gaussian
profile is also often used, either with a width set by the kinetic temperature
or a fixed velocity width which is assumed to be due to micro–turbulence.
This discussion on φ(ν) is rather trivial, but recall that one has to choose
a φ(ν) to calculate for instance an optical depth; usually the optical depth
for the centre of the line is given. Also this is the place where peculiar line
shapes due to internal motion are created.

For the absorption coefficient we find in a similar way

αν =
hν

4π
(n1B12 − n2B21)φ(ν).

From considerations that the level populations must reach the Boltzmann
distribution when the matter is in equilibrium with radiation in thermody-
namic equilibrium (the Planck law) and the fact that this must hold even in
the absence of collisional transitions, the Einstein relations can be derived:

g1B12 = g2B21

and

A21 =
2hν3

c2
B21.
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With the expressions for jν and αν one can write the source function in
terms of Einstein coefficients:

Sν =
A21

B21

1
n1g2

g1n2
− 1

.

We can define an excitation temperature which characterizes the ratio of
n1/n2:

n2

n1

=
g2

g1

e
− hν

kTex

Taking this definition, the source function becomes

Sν = Bν(Tex),

which makes an easy interpretation possible. Here Bν(T) is the blackbody
radiation field at temperature T :

Bν(T ) =
2hν3

c2

1

ehν/kT − 1
.

The general solution for a homogeneous medium is

Iν = Bν(Tex)(1− e−τν ) + Ibg
ν e−τν .

Insight can be obtained from the expression in the Rayleigh–Jeans approxi-
mation:

TR

dτν

= −Tbg + Tex.

I use the term TR here, the radiation temperature and reserve TB, brightness
temperature, for Iν = Bν(TB), so only when the Rayleigh–Jeans approxima-
tion is accurate, TB = TR. A very simple transparent form is possible in a
homogeneous medium

TR = Tex(1− e−τν ) + Tbge
−τν

One should realise that the excitation temperature describes only this single
transition. In the case of thermal equilibrium, the n1/n2 population ratio is
set by the Boltzmann function and the source function is the Planck function
at Tkin.
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3 Solving radiative transfer problems

3.1 Statistical equilibrium

The radiative transfer equation has been given in the last section, so the
only problem left now is to specify some ni to plug into the radiative transfer
equation. This is where the problems arise. In principal we can write down
the equation for statistical equilibrium; this is now just bookkeeping in which
state our molecules (or atoms) are.

Before doing so, let’s discuss collision rates. The rates Cij are the col-
lision rates per second per molecule of the species of interest. They must
depend on the density of the collision partner, so they can be expressed as
Cij = Kijn

col, where ncol the density of the collision partner is, often H2.
The collisional rate coefficients Kij (in cm3 s−1) are the velocity-integrated
collision cross sections, and depend on temperature through the relative ve-
locity of the colliding molecules and possibly also through the collision cross
sections directly.

The collision rates obey the so-called detailed balance relations, which
are the ‘collisional analogs’ to the Einstein relations. For a two-level system
in thermodynamic equilibrium,

n1C12 = n2C21

If we plug in the Boltzmann distribution for n1 and n2 with the appropriate
statistical weights we find

C12 =
g2

g1

C21e
−∆E

kT .

Since the Kij are microscopical constants this relation must also hold in cases
out of equilibrium.

Now we can write the statistical equilibrium down for the two level case
(2,1).

dn1

dt
= −n1(B12J̄ + C12) + n2(A21 + B21J̄ + C21)

dn2

dt
= n1(B12J̄ + C12)− n2(A21 + B21J̄ + C21),

where J̄ is Jν integrated over φ(ν), and Jν is the average Iν over the whole
4π steradian. To solve this we thus need to know the radiation field which
was what we were after in the first place.

This problem can be solved, usually with some simplifying assumptions.
I will discuss the escape probability method and the LTE assumption.
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3.2 Escape probability

The problem is how to “decouple” the radiative transfer calculations from
the calculations of the level populations. A popular approach for this is the
escape probability method, first introduced by Sobolev (5) for expanding
envelopes. The basic idea is to invent a factor that determines the chance
that a photon at some position in the cloud can escape the system.

Remember that we need to estimate J̄ to calculate the level populations.
Where does this intensity come from? It is the amount of radiation “inside”
the source, so for a completely opaque source it equals the (profile averaged)
source function S. If β is the chance that a newly created photon can escape
from the cloud then J̄ = S(1−β). Now the statistical equilibrium equations
take a very easy form:

dn2

dt
= n1C12 − n2C21 − βn2A21.

So now we can solve the level populations and the radiation field separately;
they are decoupled. In principle we can also easily add the contribution
from background radiation here. We just take the background intensity, the
average chance that it penetrates into the source is (1− β).

Now we are left with the task to estimate the escape probability. The
method is based on the assumption that we can find some expression for this
β depending on geometry and optical depth but not on the radiation field.
Several forms have been proposed that depend on geometry; remember that
we have to find a form that estimates the average local escape probability
over all directions.

A very crude form of β in a one-dimensional case can be estimated as:

β =< e−τ >=
1

τ

∫ τ

0
e−τ ′ dτ ′ =

1− e−τ

τ
.

In other expressions one usually expresses β in terms of the optical depth τ
in the direction of the observer. It happens that the from of β for a radially
expanding sphere is equal to the result above. This is called the Sobolev or
large velocity gradient (LVG) approximation; see for example Elitzur (2), p.
44 for a derivation:

β =
1− e−τ

τ

For a homogeneous slab is found:

β =
(1− e−3τ )

3τ
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Also for a turbulent medium an escape probability has been estimated:

β =
1

τ
√

π ln(τ/2)

Finally for a uniform sphere, Osterbrock (6) derives

β =
1.5

τ
[1− 2

τ 2
+ (

2

τ
+

2

τ 2
)e−τ ].

RADEX uses this last formula to estimate the excitation and radiation field
in the following way. (For high optical depth, only the first term of the
formula is retained; at low optical depth, a power series approximation is
used.) As a first guess the level populations in the optically thin case (or for
LTE) are calculated; this then gives the optical depth and hence the escape
probability, from which the new level populations can be directly calculated.
The program iterates this procedure to find a consistent level population and
optical depth, and computes all line strengths for that solution. Practical
details are given in the next section.

3.3 Optically thin radiation

We have seen that the problems with the coupling between radiation and
level populations make a complex calculating scheme necessary. There are
two limiting cases in which this complication disappears. First, when the
radiation field in the lines is unimportant for the determination of the level
populations, and second, when the level populations are in thermal equilib-
rium (LTE), although not necessarily in equilibrium with the radiation field
(see next section).

Assuming that the level populations are not affected by radiation in the
lines makes it possible to write all transition probabilities for the equations
of statistical equilibrium, and you can solve directly the level populations.
Thus one can calculate the line strengths from that. Note that for instance
the Tbg = 2.73 K cosmic background radiation field always affects the lower
level populations of heavy rotors like CO and CS. Because we assume the
lines are optically thin we can easily take this into account.

3.4 Local Thermal Equilibrium

In local thermal equilibrium we assume that the level populations are gov-
erned by the Boltzmann equation and are thus independent of the radiation
field. On Earth only in very special cases (e.g. inside lasers) does this as-
sumption break down. But in most of the interstellar medium, the density
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is so low that the populations are not thermalised and one can have natural
maser phenomena. It can be important to make some estimate of the critical
density for this process. For thermalisation, the time scale for collisions is
significantly shorter than that for spontaneous decay. So we find

1

C21

¿ 1

A21

or
n À ncrit

where ncrit = A21/K21. This is readily reached for CO, where the Einstein
coefficient is relatively low, giving ncrit ≈ 3 · 103 cm−3 for the J=1→0 line,
and implying that CO is a good thermometer. For other transitions, this is
less easy. Take as an example HCO+ J=1→0 which has a critical density of
2 · 105 cm−3. Of course equilibrium is more easily established when the lines
get optically thick, because the radiation will start to help the thermalisation
of the levels.

In thermal equilibrium the source function becomes the Planck function,
but in addition we can simplify the expression for the absorption coefficient,
because we now know how the levels are populated. In LTE and a homoge-
neous medium

Sν = Bν(T )

and

αν =
hν

4π
n1B12(1− e− hν

kT )φ(ν)

where the exponential term “corrects” for stimulated emission in the equilib-
rium assumption. The density of molecules in the lower state can be simply
calculated from the Boltzmann distribution:

ni =
gie
− Ei

kT

∑∞
0 gje

−Ej

kT

nmol

When the source function is the Planck function it is illustrative to write
the radiative transfer equation in terms of temperatures. This can only be
done in the Rayleigh–Jeans limit because only then does the Planck function
become linear (generally Bν(T1) + Bν(T2) 6= Bν(T1 + T2) ). Taking the
Rayleigh–Jeans limit of the transfer equation

dIν

dτν

= −Iν + Bν(T )
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yields
TR

dτν

= −TR + T.

A simple solution is found for a homogeneous medium

TR = T (1− e−τν ) + Tbge
−τν

So when the source is homogeneous, optically thick, and in LTE, TB = T .
Now if the Rayleigh–Jeans law holds then we know TB = TR. In § 2.2, it is
shown that TR is equal to the Tmb when the source is resolved. In summary,
for an ideal telescope, looking at a resolved source with large optical depth
(τν À 1) which is in LTE (n À ncrit) we find for a line at the frequency
where the Rayleigh–Jeans approximation holds that TA = T .

4 RADEX

4.1 Input

The RADEX code was originally written by John Black, with improvements
made in Leiden, and serves as a non-LTE excitation and radiative transfer
code.

The first assumption in RADEX is that of a homogeneous medium. RADEX
does not know anything about geometry or velocity fields. In particular it
does not know whether the escape probability assumption holds. Because
it does not know about source geometry one can specify the amount of ma-
terial as a column density. The absence of knowledge of source structure
also implies that RADEX cannot give a flux or specific luminosity, it can just
produce intensities. This then implies that the user has to correct for beam
dilution or make sure that the source is resolved. Often the easiest way out
is obviously to try to model intensity ratios and hope/argue that the beam
dilution for both lines is comparable. As resolution changes with telescope
and observing frequency this is not easy.

The above drawbacks are (somewhat) compensated by the fact that it can
deal with linear, symmetric-top and asymmetric-top molecules. It can model
the collisional (de)excitations with up to seven different species and because
the escape probability assumption has effectively decoupled the radiation
from the molecular excitation it is possible to include background radiation.

To run the on-line version of RADEX, one needs to choose a molecular data
file first. The format of these files is described on the Leiden molecular data
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base homepage 1. In addition, one must supply the following parameters:

• The spectral range for the output. This is only for convenience be-
cause some molecules have many lines and create lots of output. The
calculations take all lines into account, of course

• The equivalent black body temperature of the background radiation
field (usually taken to be the microwave cosmic background field, TCBR=2.73 K)

• The kinetic temperature of the molecular cloud

• The number density of H2 molecules in the cloud. The program can
deal with other collision partners, but this is not implemented in the on-
line version. Collisions with He are not taken into account; for a rough
estimate, multiply the input density by 1.2 which is just the interstellar
He abundance (He/H2=0.2). The effects of mass and geometrical cross
section between He and H2 cancel out to first order.

• The ratio of ortho- to para-H2 molecules in the cloud. This only matters
for CO, H2O and OH, where collisional rate coefficients exist for both
types of H2. Not sure what to do here? Just use the default value,
which assumes that the H2 J=1/J=0 ratio is thermalized at the kinetic
temperature

• The column density of the molecule: this is the parameter to vary to
match the output signal level

• The width of the molecular lines (assumed the same for all lines)

4.2 Calculation

Let’s summarize the assumptions that are made. RADEX uses the escape
probability method for a homogeneous medium. Furthermore we are blindly
trusting somebody else’s radiative and collisional transition rates. Note that
the collision rates still depend on temperature. Such data are available for
only a limited range of temperatures, and must therefore be interpolated or
extrapolated. Notice that the relation C12 = g2

g1
C21e

−(∆E/kT ) ensures that for
high densities the resulting distributions will go to their Maxwellian values,
even if the rates are grossly wrong.

Also there are cases when one should worry whether a sufficient number
of levels is taken into account, not just because collisions are exciting levels

1http://www.strw.leidenuniv.nl/∼moldata and/or
http://www.mpifr-bonn.mpg.de/fvandertak/ratran/molformat.html
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that may not be present, but also because the ambient radiation field can
excite higher levels (e.g., vibrational levels). In general, the data files are
large enough to handle temperatures up to 500 K, but not much higher.

The calculations proceed as follows. A first guess of the relative popu-
lations of the levels is produced in the optically thin case. So background
radiation is taken into account without being shielded, but no internally pro-
duced radiation is yet available. The solution for the level populations allows
calculation of the optical depth in any of the lines, and thus we can find a new
guess of the excitation by using the escape formalism. In this the background
radiation is treated in exactly the same manner as the internally produced
radiation. So we can iteratively find a consistent solution for the level popu-
lations and the radiation. The program decides when this has occurred and
produces output.

The actual quantities and formulae that are used inside RADEX are as
follows. The total intensity at line center frequency in erg s−1 cm−2 Hz−1

sr−1 is given by
I t
ν = Bν(Tex)

[
1− e−τ0

]
+ e−τ0Ib

ν ,

where the first term is the emission in the line and the second term the
background emission at line frequency, reduced by any absorption in the line.
The τ0 is the optical depth at line centre. Both τ0 and Tex are calculated
from the level populations (see below). Bν(T ) in convenient units is

Bν(T ) =
3.973× 10−16ν̃3

exp(1.43883 ν̃/T )− 1
ergs−1cm−2Hz−1sr−1,

where ν̃ is the wave number in cm−1.
The total intensity of the line in excess of background is:

I t
ν − Ib

ν = (Bν(Tex)− Ib
ν)[1− e−τ ].

The brightness temperature TB is defined as the temperature of a blackbody
that would give the same intensity as that of a source of the same angular
extent:

TB = f(I t
ν) =

1.43883ν̃

ln[3.973×10−16ν̃3

It
ν

+ 1]
K.

The brightness temperature of the line in excess of background is then given
by

TB = f(I t
ν)− f(Ib

ν).

The Rayleigh–Jeans equivalent temperature TR, which can be compared di-
rectly with observations, is given by

TR =
1

2kν̃2
(I t

ν − Ib
ν).
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The excitation temperature of a line, Tex, is related to the ratio of popu-
lations of the two levels that participate in the transition 2 → 1:

x2

x1

=
g2

g1

exp[−E2 − E1

k Tex

],

where xi is the fractional population in level i, gi is the statistical weight of
level i, and Ei the energy. The optical depth τ0 in the line at line center is
related to the populations by

τ0 =
A21

8πν̃3

N
∆v

[x1
g2

g1

− x2],

where N is the total column density of the molecule, and ∆V is the FWHM
of the line. Note that the optical depth, and therefore the RADEX results, only
depend on the ratio of column density to line width, N/∆v, which is similar
to LVG programs.

In general, the background radiation is due to the TCBR=2.73 K cosmic
background radiation field and to far–infrared radiation by dust in the cloud
with temperature Td. The background intensity seen by the observer is then
given by

Ib
ν = Bν(TCBR) + Bν(Td)(1− e−τd).

The background radiation in the cloud seen by the molecules may be diluted
due to geometrical effects. If the lines are optically thin,

Ib,int
ν = Bν(TCBR) + ηBν(Td)(1− e−τd),

where η is a dilution factor lying between 0 and 1. If the lines are optically

thick, the absorption and emission in the line itself modifies the internal
radiation field in the escape probability formalism to

I int
ν = β

[
Bν(TCBR) + Bν(Td)(1− e−τd)

]
+ (1− β)Bν(Tex),

where β is the escape probability. This internal radiation field I int
ν is used in

the solution of the statistical equilibrium equations for the level populations
xi.

4.3 Results

In the on-line version of RADEX, the output pops up in a new window. After
a repeat of the input parameters, you find for each spectral line in the range
that you specified:
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• the quantum numbers of the upper and lower states, which a format
depending on the type of molecule

• the line frequency. For several molecules, the frequencies are of spec-
troscopic accuracy (0.1 MHz uncertainty), but please check up-to-date
line catalogs2 for the most precise values to use for observations

• the excitation temperature of that line. In general, different lines
will have different excitation temperatures. Lines are thermalized if
Tex=Tkin; in the LTE case, all lines are thermalized.

• The optical depth at line center, calculated from φ(ν) = 1/∆ν.

• TR, the Rayleigh–Jeans equivalent of the intensity of the line minus the
background intensity. As discussed earlier, this is the quantity that is
usually measured at the telescope.

The velocity-integrated intensity
∫

TRdv (also called line flux) can be
calculated as 1.0645 TR∆v, where the factor 1.0645 (

√
π/2

√
ln 2) is a correc-

tion to estimate the integration over a gaussian profile with FWHM of ∆v
compared to the adopted square profile. The integrated profile is useful for
estimating the total amount of emission in the line, although it has limited
meaning for optically thick lines since the changing optical depth over the
profile is not taken into account. In other words, the entire radiative transfer
is performed with rectangular line shapes. Proper modeling of optically thick
lines requires a program that resolves the sources both spectrally and spa-
tially, using either the Accelerated Lambda Iteration or Monte Carlo method
(see van Zadelhoff et al. (7) for a summary of methods and codes).

5 An example

It can be instructive to go through an example and calculate a few things
and compare these with RADEX and “observations”. So let’s look at the
CO J=1→0 emission from a small cloud, a uniform sphere in fact, with a
diameter of 3000 AU, a temperature of 10 K and a total density of n = 3 ·103

cm−3. We assume further that the fractional abundance of CO fCO = 8·10−5,
resulting in a CO column density of NCO = 1.077 · 1016 cm−2.

The thermal line width of such a cloud is ∆vkin =
√

2kT/m0 = 0.077

km/s. In most clouds the line widths are actually much broader than what
we find from the temperature. It is assumed that the line width is set by

2http://spec.jpl.nasa.gov and/or http://cdms.de
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microturbulence. Likewise I assume here ∆v = 1 km/s, so ∆ν = 0.385 MHz,
because the frequency of the line is ν = 115.271 GHz.

The relevant values for the CO J=1→0 line are g1 = 1, g2 = 3, A21 =
7.165 · 10−8 s−1 and hν/k=5.53 K.

5.1 Local Thermal Equilibrium

Let’s first carry out the calculations for local thermal equilibrium. The opti-
cal depth

τν =
∫

ανds =
hν

4π
n1 B12(1− e− hν

kT ) φν(v) ∆s

expressed in terms of A21 becomes

τν =
c2

8πν2
n1

g2

g1

A21(1− e− hν
kT ) φν(v) ∆s.

We find n1∆s = fn1(T )fCOn∆s = fn1(T )NCO for thermal equilibrium by
evaluating the Boltzmann distribution at 10 K. The relative occupation turns
out to be fn1(10) = 0.252 (an easy way to check this can be carried out with
RADEX by giving an extremely high density for the collision partner as input
so that the levels become thermalised). This leads to τ0 = 1.735. As said
before this is the optical depth of a square φ(ν). It differs slightly from the
centre of line optical depth of a Gaussian profile.

The radiative transfer equation in the Rayleigh–Jeans approximation be-
comes

TR = Tbge
−τ + T (1− e−τ )

which yields 8.718 K for the total brightness at the frequency of interest. This
corresponds to 5.983 K after beam switching against the background. But
the Rayleigh–Jeans approximation is no longer valid at 115 GHz, so one does
not get the correct Rayleigh–Jeans equivalent temperature this way either.
Using the intensities, the beam-switched intensity becomes 2.234 · 10−17 W
m−2 Hz−1 ster−1. This gives TB = 7.919 K or TR = 5.472 K.

5.2 Escape probability approximation

We now run this same problem through RADEX. The fractional occupation
will now be larger for the lower level because the molecules will sponta-
neously decay more rapidly than collisions will repopulate the higher levels:
fn1 = 0.4935. This implies that the line is more optically thick, τ0 = 2.345.
Furthermore the excitation temperature differs from the true temperature,
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but this is a mild effect in this case: Tex = 8.403 K. The resulting radiation
temperatures are even lower: RADEX lists TB = 5.166 K and TR = 4.610 K.

Note that here the agreement is reasonably good. This is typical for
CO, since the density of the cloud is close to the CO critical density, so the
excitation is close to thermalisation. Also CO is simple and the background
radiation is low, prohibiting complex excitation mechanisms. Furthermore,
the line becomes optically thick, decreasing effectively the critical density.

The final worry is whether we will resolve this sphere and what we will
measure as a result. Let’s assume this source is at 1 kpc and we observe it
with the IRAM 30m. We assume a beam of 21′′ and ηA = 0.5. Our source
of 3000 AU only subtends 3′′. So even if the sphere has a uniform brightness
(which is probably not correct, because it will be less optically thick towards
the edges) the beam dilution is severe, (3/21)2 = 0.0204. Thus, the observed
antenna temperature is 0.0204×4.610×0.5 = 0.047 K. With a single sideband
system temperature of 150 K and a spectral line of width 0.385 MHz this
requires 10 minutes on-source time to make a clear detection (with some
assumption on correlator efficiency etc.). Another way of saying this is that
the line flux density is almost 1 Jy.

Note that everybody makes a simplification in this last calculation by
estimating the beam dilution against an empty sky. However the situation
is in principle slightly more complex since the rest of the beam is filled with
2.73 K radiation, which does not add up on the position of our source, because
it is opaque.
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