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ABSTRACT

We show that the solution of the transfer equation appropriate for models of the penetration
of diffuse UV radiation into interstellar clouds, subject to attenuation by coherent, nonconserva-
tive, anisotropic scattering from grains, can be expressed analytically, with arbitrary accuracy,
by means of the spherical harmonics method. Models of plane-parallel and homogeneous sphe-
rical clouds are given as functions of three parameters: 7, the central optical depth, w the single
scattering albedo, and g the parameter in the Henyey-Greenstein phase function. These models
qualitatively confirm the results of earlier Monte Carlo simulations of dust scattering, but reveal
quantitative discrepancies: the earlier results overestimated the actual mean intensity, often by

more than an order of magnitude.

Subject headings: interstellar: matter — radiative transfer — ultraviolet: general

I. INTRODUCTION

UV radiation fundamentally influences the proper-
ties of interstellar clouds by controlling the ionization
and dissociation balance of important ions and mole-
cules. By shielding the interior of clouds from am-
bient, diffuse UV radiation, dust grains create an
environment in clouds which favors low temperatures
and molecule formation. Although the scattering
properties of grains have not been determined defini-
tively, some observations suggest that grains can have
high albedos and that the redistribution of scattered
light can be far from isotropic (Lillie and Witt 1976).
Therefore, an investigation of the penetration of
diffuse UV radiation into clouds should consider the
effects of coherent, nonconservative, anisotropic
scattering by grains.

In detailed calculations of the transfer equation for
this problem, Sandell and Mattila (1975) assumed the
Henyey-Greenstein phase function and used the tech-
nique of Monte Carlo simulation to demonstrate that
such scattering properties greatly reduce the shielding
effects of grains from the attenuation that would
result if interstellar reddening were a purely absorp-
tive process (Stief et al. 1972). Using a rather different
phase function, Whitworth (1975) also found the
shielding to be greatly reduced. In this paper we
show that the transfer equation for the penetration
of diffuse UV radiation into clouds can be solved with
arbitrary accuracy in analytic form by means of the
spherical harmonics method (see, e.g., Davison and
Sykes 1957).

In §II we solve the radiative-transfer problem by
representing the specific intensity as an expansion in
Legendre polynomials. The expansion coefficients are
functions of optical depth, and are exponential func-
tions in plane-parallel geometry and spherical Bessel
functions in homogeneous spherical geometry. These
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functions exhibit decay rates that are found as roots
of a certain characteristic equation. The smallest root
determines the asymptotic solution for the mean in-
tensity in clouds of sufficient optical depth. In §III
we present a series of models in which the grains
scatter according to a Henyey-Greenstein phase func-
tion. The Henyey-Greenstein function has become con-
ventional as a simple model to interpret observations
of grains and is the form used by Sandell and Mattila
in their Monte Carlo models. In § IV we also treat as
a special case the simple phase function used by
Whitworth (1975). In § V we discuss the accuracy and
efficiency of the method.

II. APPLICATION OF THE SPHERICAL HARMONICS
METHOD

The spherical harmonics method allows us to
generate arbitrarily accurate solutions for the radia-
tive-transfer equation appropriate for coherent,
nonconservative, anisotropic scattering of ambient,
external UV photons into an interstellar cloud subject
to attenuation by embedded dust grains. With slight
modification the techniques apply to both plane-
paralleland homogeneousspherical clouds. Inoverview,
we represent the specific intensity as an expan-
sion in Legendre polynomials, assuming azimuthal
symmetry for both the specific intensity and the phase
function for scattered light. The coefficients of the
Legendre polynomials are either exponential func-
tions or modified spherical Bessel functions of the
first kind, which express the depth dependence in the
case of plane-parallel or spherical clouds, respectively.
Readers who wish to see detailed discussions of
analogous problems are referred to Davison and Sykes
(1957), Chandrasekhar (1960), Case and Zweifel
(1967), or Sobolev (1975).
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a) Plane-Parallel Geometry

In a plane-parallel medium the transfer equation
for the specific intensity I(r, p) at spatial coordinate
r directed along an angle arccos (1) with respect to
the direction of increasing r is

" 3[(5; " _ —a(r)[I(r, p) — S(r, W], @

St = 1 f p(cos O)I(r, w)dY, ()

where S(r, ) is the source function for scattered
radiation, and the scattering properties are described
by the extinction coefficient per unit length «(r), the
single scattering albedo 0 < w < 1 (the fraction of
light that is actually absorbed is 1 — w). The phase
function for redistribution of scattered light is
p(cos ©), where ® is the angle between the incident
and scattered beam.
In terms of the optical-depth scale 7, defined by

dr = —ofr)dr, 3

the transfer equation assumes the familiar form
ol(r,
pIOB ) - S, @

The angular dependence of the specific intensity can
be expressed as a series of Legendre polynomials

Pp): -
I(r,p) = I_Z) 1+ DE(T)Pp) - ®

By the orthogonality properties of Legendre poly-
nomials, it follows the depth-dependent coefficients of
this expansion are given by

EO =3[ 1nwp@de. ©

Substitution of the values / = 0, 1, and 2 into this
equation yields the useful results

F():J; F1=H; F2=3K‘—J, (7)
where

+1

J(r) = %f I(r, p)dp = mean intensity ,
-1
+1

H(r) = %J I(r, wpdp = Eddington flux ,
-1

+1
K(r) = %J I(r, p)p?dp = K-moment . ®)
-1

The phase function p(cos @) can similarly be ex-
panded in Legendre polynomials:

p(cos ®) = i (2! + 1)o,P(cos ©) . )

The expansion coefficients o, of the phase function
can be expressed

+1
o =1 j PP (10)

The normalization of p(u) implies that o, = 1. The
next coefficient o;, often denoted by g, represents a
mean cosine for the scattering angle:

+1
m=g=3 wGods = Ccos®). (1)

For the present paper it will be assumed that the
radiation field has azimuthal symmetry about the
normal rays. In that case it can be shown (e.g.,
Chandrasekhar 1960; § 48, eq. [86]) that the source
function can be expressed as

+1
S =3[ R, (12)
-1
where

R, ') = i @+ DoP@WPW).  (13)

The expressions for the intensity, equation (5), and
phase function, equation (13), are now substituted
into the transfer equation (4), using the recurrence
relation

@+ DpP(p) = ( + DPa() + 1P, (14)

satisfied by Legendre polynomials. Equating the co-
efficients of Legendre polynomials on each side of the
equation, we find that the transfer equation assumes
the form

IF',y(7) + (I + DF144(7)
=2/ + DA — wo)F(7), (15)

where a prime denotes differentiation with respect to .

This is an infinite system of differential equations;
a finite approximation to it can be obtained by arbi-
trarily setting Fp,:(7) = O for some odd value of L
(the P -approximation). The reasons for choosing L
odd are discussed by Davison and Sykes (1957) and
Case and Zweifel (1967). The approximate system con-
tains L + 1 = 2M equations and 2M unknowns.
Since the coefficients of the derivatives in equation
(15) are constant, solutions for F; can be found as a
sum of 2M exponential terms:

F(®) =3 Cimexp (—kar). (16)

Substituting this form into equation (15) and equating
coefficients of each exponential yields the relation

lCl—l,mkm - @+ 1)1 - w"z)ct,m
4+ (+ DCarmkn=0. (17)
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This is an eigenvalue problem, which can be solved
only for certain characteristic values of k,. In the
Appendix it is shown that for 0 < w < 1 these
characteristic values are real and occur in positive-
negative pairs. For convenience the M = (L + 1)/2
positive roots are labeled in order of increasing
magnitude:

0<k1_<_k2S"'SkM. (18)
The remaining M roots are labeled such that
k_ow=—ky,. (19)

For each value of m, equation (17) implies certain
fixed ratios between the coefficients C,,. It is con-
venient, therefore, to define 4,,F = C, ,, and write

Cimn = An™Rip . (20)
From equation (17), the ratios R,, satisfy
IR, _y nkm — 21 + D(1 — wo)R;
+(+ DRiyimkn=0. (21)
Starting with the values
Ron=1, Rin=(1— wlk,, (22)

the recurrence relation (21) determines the R,,. It
should be emphasized that the R,, do not depend on
boundary conditions or the optical thickness of the
medium and can be determined once and for all for
each choice of w,0; and the order of the approximation
L. (The same values of the R, ,, also apply to spherical

problems. See § 115.) Since k_,, = —k,, it is easy to
show the general result
R, _mn=(—1)R,. 23)

Equation (16) can now be written as

F@ = > AfRmexp(—kyr),  (4)

m=-M

where the prime on the summation means to omit the
m = 0 term. The intensity becomes

I(r, p) = Z QL+ DP() D' A R,

x exp (—kn7) . 25

It now only remains to find the 2M constants 4, by
applying the boundary conditions (see § Ilc).

b) Homogeneous Spherical Geometry

We next consider the transfer equation for a homo-
geneous spherical cloud; many aspects of the dis-
cussion for plane-parallel clouds will carry over. If
the cloud is homogeneous so that «(r) = «, and is of
total radius R and optical depth 7, (to the center),

Vol. 236

then the radius and optical depth to the center are
related by

7, = aR,
Te— T = or, (26)
and the transfer equation can be written as
ol 1—p?dl

byt g = —e=8),  (@))
where the source function remains as in equations (2)
and (12).

Again, we seek solutions of the form given in equa-
tion (5). We substitute that expression into the sphe-
rical transfer equation and eliminate the derivative
with respect to u by the recurrence relation

@1+ 10 = ) B — 10+ DIP-s) — Praa]

28)

We find the following relation from the requirement
that the coefficient of the /th Legendre polynomial
vanishes:

I(F',-l - ’—‘,—‘F) — @+ D(1 - woF,
0+ 1)(F',+1 . #F) ~0. (9

The solution to this equation can be written

F() = >, Cuillner) (30)

where i, is the modified spherical Bessel function of the
first kind:

@) = () s G1)

Here I, ,,,, are modified Bessel functions of the first
kind. These functions are elementary: for example,
io(z) = (sinh z)/z. Each term of equation (30) satis-
fies equation (29) by virtue of the relations (Abramo-
witz and Stegun 1965; formulae 10.2.20 and 10.2.21)

dii_,(z) 1-1. j
. -1 =1,
Bn® 112,y (32)

Modified spherical Bessel functions of the third kind
also obey these relations and also could have been
used to construct general solutions; however, being
singular at r = 0, they were rejected. The resulting
equation for the coefficients C,,, and k,, is

IC -1 mkn = 21 + D) = @0)Cin + (I + 1)Cii 1 mkm
=0, (33)
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which is identical to equation (17) for the plane-
parallel case. Thus, we also write

Clm = AmSle_; Ams = Co.m ) (34)

so that R,,, are also identical with these of the plane-
parallel case. Now,

M
Fl(r) = Z AmS-leil(kmo‘r) P (35)
m=1

and the intensity field is

16,0 = 3 @1+ DPG) Y, A Rugilnr)
(36)

One distinction of the spherical case over the plane-
parallel case is that the summation on m is only over
positive values, corresponding to positive values of k,,.
There are, therefore, only half the number of constants
A5 with which to satisfy boundary conditions. This
is correct, because our choice of the nonsingular
Bessel functions i, is already equivalent to having set
boundary conditions at r = 0, and it only remains
to satisfy boundary conditions at the surface. In the
plane-parallel case, boundary conditions need to be
applied at both surfaces, and this requires twice the
number of constants.

¢) Boundary Conditions

We now formulate boundary conditions appropriate
for interstellar clouds surrounded by an ambient
radiation field that is isotropic for all angles incident
on the cloud’s surface. We also assume that the inci-
dent radiation is identical on both sides of the plane-
parallel clouds and over the entire surface of the
spherical clouds. In either geometry the symmetry at
the cloud’s center unambiguously provides half the
required constraints; however, there is no unique
prescription for the remaining surface boundary
conditions. Here we use Mark’s conditions, which re-
quire the solution to match the incident intensity at
M discrete angles y; that are the negative roots of the
Legendre polynomial of degree L + 1. (See Davison
and Sykes 1957 for a discussion of Mark’s and other
surface boundary conditions.)

First consider the plane-parallel case. For a cloud
of total optical depth T = 27, the symmetry con-
dition I(+, w) = I(T — =, —p) allows us to eliminate
half of the available constants, i.e.,

Itr,) = 2 @+ DPK) 3, AnRin

x {exp (—kn7) + (= 1) exp [kn(r — 27)]} -
(37

At the surface 7 = 0 we can construct a set of M
linear equations for the coefficients 4,,” by requiring
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the solution to match the incident intensity I° at the
M angles p;. For each angle p, let

L
By n" = Z @7 + DRy wP(ms)
i=o

x [1 + (=Dtexp(—2ku7)].  (38)

The coefficients A4,F are the solution of a matrix
equation of order M:

M
D BiafAF =1° (39)
m=1

Next consider spherical geometry. Application of
Mark’s condition at 7 = 0 leads us to define

Bt = S @+ DRPGIKeR) . (40)

Then the coefficients 4,5 satisfy
M
D BinidyS =1°. [e3))
m=1

d) Asymptotic Limit

Although the general solution involves a sum of M
values of k, in the plane-parallel models the factor
exp (—k7) in the depth dependence guarantees that,
for clouds of sufficient optical depth, the asymptotic
solution at great depth will be dominated by the
smallest characteristic value k;. The growing mode
exp (k,7) in the plane-parallel solution represents the
influence of radiation incident on the far boundary
and is of negligible importance until, at the cloud’s
center, it contributes half the mean intensity. Since the
functions i,(z) are asymptotically

i@ ~ e,z @)

the spherical solutions are also dominated by the
lowest characteristic value k;.

The explicit form of the mean intensity in the
asymptotic limit is

J(7) = I°4;"{exp (—ky7) + exp [ku(r — 27)]}

43)
in the plane-parallel case and

Fa(re =) “9)

J(r) = I°4;
in the spherical case.

In order to know when the asymptotic limit ap-
plies, we must also find the next larger root k,. Then,
barring large differences in the boundary coefficients,
the eigenvector associated with eigenvalue k; will
dominate the solution for optical depths greater than
TA When

exp [(ke — k)7l > 1. 45)
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III. CLOUD MODELS WITH A HENYEY-GREENSTEIN
PHASE FUNCTION

We apply the techniques developed above to
generate models of interstellar clouds with a Henyey-
Greenstein redistribution function. The models de-
pend on three parameters: (1) 7. the optical depth to
the cloud’s center, (2) w the single scattering albedo,
and (3) g the mean cosine of the scattering angle. If
O is the angle between incident and scattered beams,
then

1-—g2

p(cos ©) = [1 + g2 — 2g cos OF2

(46)

is the one-parameter phase function proposed by
Henyey and Greenstein (1941) which, by design, takes
a particularly simple form as an expansion in Legendre
polynomials:

p(cos ©) = i (21 + 1g'P(cos ), 47)

so that the o, have the values
o =g'. (48)

From equation (11) we see that g indeed has its
previous meaning as the mean cosine of the scattering
angle. As g varies from 0 to 1, the scattering changes
from isotropic to completely forward scattering.
Obviously, the latter case is equivalent to pure absorp-
tion (that is, no scattering integral appears), with a
new optical-depth scale 7" = (1 — w)r. This de-
generacy of the scattering problem with an equivalent
problem involving pure absorption will explain several
properties of the solutions found below as g — 1.

An analytic treatment similar to ours is given in
Sobolev (1975) for a semi-infinite plane-parallel
atmosphere. In particular he discusses the charac-
teristic equation and the existence of an asymptotic
solution for the decay of mean intensity, and he gives
values for that decay rate as a function of w, g. (See
also van de Hulst 1970). We extend these discussions
to include the complete solution for both plane-
parallel and spherical models, with isotropic incident
fields. Our solutions for spherical models are com-
pared with those of Sandell and Mattila (1975), which
were derived by Monte Carlo simulations.

a) Roots of the Characteristic Equation

To apply the preceding theory we need the charac-
teristic roots k,,. Analytic expressions for the charac-
teristic equation can be obtained for either isotropic,
g = 0, or pure forward scattering, g = 1:

tanh~! (k)/k = 1w, g=0; (49a)
k=1—-ow, g=1. (49b)

The result for g = 0 follows by comparing equation
(A6) with the continued fraction representation for
tanh~! (x)/x; it is valid for all k. The result for
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FiG. 1.—The characteristic value k; as a function of the
single scattering albedo o for various values of the phase
factor g in the Henyey-Greenstein phase function. The roots
were found by numerical solution of the characteristic equa-
tion for a sufficiently large order that the root had converged
to at least three significant figures.

forward scattering follows by noting that when g = 1,
equation (A6) takes a form identical to equation (49a)
in the special case w = 0, g = 0, if we replace k2 by
k?/(1 — w). This special case of equation (49a) has
the limiting solution k2 — 1 as w — 0, which demon-
strates the particular solution for g = 1. For inter-
mediate values of g, 0 < g < 1, equation (A6) must
be solved numerically (see Figs. 1 and 2).

There are two regimes where the roots are not well
separated; both correspond to situations where
scattering is negligible compared with pure absorp-
tion. The first regime occurs when the smallest root is

0.8

0.6

I
1

0.4

0.0 | | | |
0.0 0.2 0.4 0.6 0.8 1.0

w

FiG. 2.—The second characteristic value as a function of
w, g (see Fig. 1). Where not shown, the second root becomes
arbitrarily close to unity (see text).

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://cdsads.u-strasbg.fr/cgi-bin/nph-bib_query?1980ApJ...236..598F&amp;db_key=AST

J. 22236, [598F D

DAD.

rt

No. 2, 1980 PENETRATION OF DIFFUSE UV RADIATION 603
1.5
° J) ] o‘o e d ° T[o ° (I) ° I oI
o o © °
0 © 0o o © . © , oO ° °
o ° 00 o ° o ° o o o o ©
<) %6 °q ° 00 ° O0 °o [}

) ) o) ° °s ° ° o, )
nI0F 00002888§§ - + 0000888?3 — ° OOOOOO - + o © ) ° —
L 900000000 ° %o
3 o R %000

%000
g O00D0O00000O0O0 o ° ° °°
= ©0000000
(W]
O " 4k _ ]
\T_'O5 I~ L_ ©000000000
©60000000000
o
00000000000
0.2=w 06=w 09:=w 09=w
00 O.3=c_)I | 0.6=g, 1 O.6:gJ B O.9=gI |
0 5 10 0 5 10 0 5 10 0 5 10 15
ORDER

F1G. 3.—Characteristic values as a function of the order of the polynomial approximation. Shown are the positive roots k, < 1.5
as a function of the order M = (L + 1)/2 of the characteristic polynomial in k2, where L is the highest order Legendre polynomial
in the approximate solution. Note that a low-order approximation suffices to represent k; with high accuracy.

near unity, where, obviously, pure absorption domi-
nates. For pure absorption the mean intensity at a
point can be evaluated as an integral over angle of the
incident intensity exponentially attenuated according
to the path length; approximated as a sum of terms
exp (—kr), the sum requires a continuous range of
decay rates kK > 1 to cope with the variable path
lengths. The second regime in which the low order
roots coalesce occurs when g— 1. As mentioned
above, this corresponds to a pure absorption prob-
lem with a new optical-depth scale 7’ = (1 — w)7.
When the depth scale is not altered, the continuum of
roots begins at the minimum root k; = (1 — w).

In Figure 3 we display the behavior of the eigen-
values, k,, as the order of the approximation increases.
For L =1, we recover the so-called “diffusion
approximation”

k2 = 3(1 — o)l — wg) (50)

for the smallest (and only root). However, as the
order of approximation increases, the smallest root
k, always decreases. The diffusion approximation
always overestimates the asymptotic rate of decay of
the mean intensity. Three points should be noted
from the figure. First, only a low order approximation
is necessary to obtain an accurate value for the decay
rate of the asymptotic solution; in most cases M = 2
suffices. Second, regardless of the size of k,, k, never
exceeds 1 by more than an arbitrarily small amount
for a sufficiently high order approximation. From the
discussion of the preceding paragraph this follows
because a continuum of decay rates, starting from
k = 1, are required to represent the direct decay of
the absorbed incident radiation. Third, for g = 0.9

the figure shows that many roots with £ < 1 begin to
appear, which suggests the need for a continuum of
roots above 1 — w as g — 1; in fact, numerical solu-
tions of the equation become difficult in this regime.

For those wishing to utilize this method, the follow-
ing properties of the characteristic equation will assist
in its solution. A lower bound on the smallest root is
provided by equation (49b). For approximations of
high order, extended precision is necessary to evaluate
the continued fraction or characteristic polynomial,
and the higher roots may be closely spaced. In pro-
ceeding from order n to n + 1 the roots of the lower
order approximation interleave between the roots of
the higher order equation. Algorithms exist (see, e.g.,
Abramowitz and Stegun 1965, §3.10.11) that allow
one to extend the computation of a continued frac-
tion to the next higher level without restarting.

b) Cloud Models

Figure 4 displays the mean intensity of radiation,
normalized relative to the incident specific intensity,
as a function of optical depth for a series of models
with plane-parallel (top row) and spherical (bottom
row) geometry. In the figure for each pair w, g we
show models with central optical depth =, = 5, 10,
15, 20 to illustrate the behavior of the depth depen-
dence. Although the models contain a complete
description of the angular dependence of the radiation
field (within the accuracy of the order of approxima-
tion, M = 11 for all models), physically it is the first
moment of the intensity, the mean intensity J, which
enters all radiative rates. To obtain only the first
moment from the double-sum series representation
of the solution, equation (36) or (37), requires a
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T T T

PLANE PARALLEL

SPHERICAL 2

| .

1
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0 5 10

OPTICAL DEPTH

F1G. 4.—Mean intensity versus optical depth. The models depend on three parameters:  the single scattering albedo, g the
phase factor in the Henyey-Greenstein phase function, and . the optical depth to the center of the cloud. For various combinations
of w, g the curves show the depth-dependent solution for the mean intensity, normalized relative to the incident specific intensity
I°, for a series of models with optical depth to the cloud center . = 5, 10, 15, 20. Models in the top (bottom) row are for clouds
with plane-parallel (spherical) geometry, and were calculated with truncation at order M = 11 in the Legendre expansion. Note
that most models show a characteristic asymptotic decay at large optical depth.

summation over only the index m with / = 0, and
Ry,» = 1. Qualitatively the solutions show the be-
havior pointed out by Sandell and Mattila (1975):
for increasing albedo or anisotropy of scattering the
radiation penetrates more effectively.

In most cases the solution achieves its asymptotic
form by the time = > 5. Note that in all models the
solution exhibits a gentle rise near the center in re-
sponse to the effects of radiation from the other
boundaries. Near the surface the terms associated
with larger characteristic values contribute substan-
tially to the mean intensity.

Figure 4 and the form of the asymptotic solution
show the strong dependence of the mean intensity on
the geometry of the cloud. The difference appears ex-
plicitly in the additional 1/[k(=, — 7)] factor in the
spherical asymptotic solution. In all cases at similar
optical depth the mean intensity is greater in spherical
clouds than in plane-parallel clouds of the same total
optical depth. Obviously, at any point and for any
angle (except radial), the path length to the boundary
in a plane-parallel cloud exceeds that length in a
spherical cloud.

Our solutions for spherical clouds differ in two im-
portant ways from similar models by Sandell and
Mattila (1975). First, we find substantial quantitative
disagreement, often by factors exceeding an order of
magnitude, with their results for the central mean
intensity; in all cases their results are too large. Prob-
ably this discrepancy arises from their definition of

“core” intensity. In their Monte Carlo simulation
they assign to the core all photons which penetrate
to within 10%, of the cloud’s center by radius. For
clouds of large optical depth, 10%, by radius still
represents a substantial depth, e.g., Ar =2, for
7. = 20. They do not indicate that any correction was
applied to account for the remaining attenuation, so
this effect could explain some or all of the differences
between our results for the central mean intensity.

The second difference concerns the depth-dependent
solutions. Sandell and Mattila suggest that the solu-
tion for mean intensity with optical depth, in a cloud
of arbitrary central optical depth, can be obtained by
interpolation in their solutions for central mean in-
tensity with central optical depth. This is equivalent
to constructing a universal intensity versus optical-
depth curve (for each pair w, g) from the solutions
shown in Figure 4 by joining the points representing
the central mean intensity for clouds of increasing
central depth. This manifestly overestimates the mean
intensity. Deep in optically thick clouds the overesti-
mate is a factor of 2 at least, since the central mean
intensity deviates from the asymptotic solution by
that factor in response to the influence of the other
boundaries. At small optical depths in thick clouds
the error can exceed a factor of 2 as is apparent from
the figure.

We also point out two minor differences in the
form of our results and those of Sandell and Mattila.
First, they plot results for the diametrical optical
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depth, while we use the optical depth to center, one-
half their value. Second, we normalize the mean
intensity relative to the incident specific intensity,
which we take to be isotropic in the half-space cover-
ing incident angles. Since the emergent intensity
cannot exceed the incident one, our solutions at + = 0
always satisfy J(0)/I° < 1. However, Sandell and
Mattila chose some normalization such that all their
plotted solutions start from I,/I, = 1 (in their nota-
tion) at = = 0. This normalization already implies
that their solutions exceed ours, but it does not ex-
plain all of the discrepancies.

¢) Asymptotic Decay Rates in Interstellar Clouds

Before our mathematical formalism can be applied
to model interstellar clouds we must first know the
scattering properties of real grains. In another paper
(Roberge, Dalgarno, and Flannery 1980) we apply
these mathematical methods to derive radiative life-
times for several atoms and molecules of astrophysical
interest and present a critical discussion of grain
properties. In clouds of sufficient optical depth the
asymptotic solution controls the UV spectrum at
great depth. Here, we apply our results for the asymp-
totic solution of the transfer equation to derive the
relative attenuation of incident radiation as a function
of wavelength using accepted values for the grain
properties.

A conventional representation for the grain proper-
ties can be constructed from the extinction curve of
Bless and Savage (1972) and the grain-scattering
properties w, g found by Lillie and Witt (1976) by
modeling observations of diffuse galactic light. For a
cloud of sufficient optical depth we can represent the
relative decay of mean intensity with visual optical
depth ky(}) as the product of the smallest eigenvalue
as a function of w, g times the attenuation relative to
visual:

kv(d) = ki(w, g)oafoy . (51)

Our results for the relative attenuation are shown
in Figures 5 and 6. A major uncertainty concerns the
behavior of the scattering properties for the short
wavelengths, 912A < X < 1500 A, so we demon-
strate the effect of three hypothetical extensions of the
grain properties to short wavelengths. The important
point is that, although the extinction curve rises
sharply to shorter wavelengths, the actual attenuation
of incident radiation may be less as a result of the
offsetting increase in the scattered radiation. This
result has, of course, been pointed out before, notably
by Sandell and Mattila, but our result takes a par-
ticularly simple analytic form. The uncertainty at
short wavelengths has particular importance for the
rates associated with the abundance of the critical
constituents C* and H,.

IV. THE WHITWORTH PHASE FUNCTION

Whitworth (1975) proposed a model for dust
scattering in which a certain fraction (1 — g) of the
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F1G. 5.—Grain parameters w, g after Lillie and Witt (1976)
with associated smallest characteristic values k;. Parameter
values for w,g for A < 1500 A represent three hypothetical
extrapolations. The characteristic value k; gives the exponen-
tial decay rate of mean intensity with optical depth in the
asymptotic limit.

scattered radiation was redistributed isotropically,
and the remaining fraction g was ‘“‘scattered” into
the forward direction, ® = 0. The phase function
thus has the form

plcos®) = (1 — g) + 2g8(cos® — 1). (52)

An expansion in Legendre polynomials yields an
equation of the form equation (9), where

00=1,
=g, I>1. (53)

The o, = 1 value follows from the normalization of
the phase function. Since o; = g, the quantity g
again has the meaning of a mean cosine of the
scattering angle.

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://cdsads.u-strasbg.fr/cgi-bin/nph-bib_query?1980ApJ...236..598F&amp;db_key=AST

J. 22236, [598F D

DAD.

rt

606 FLANNERY, ROBERGE, AND RYBICKI

T T

800 1300 1700 2100 2500 2900
WAVELENGTH (A)

FiG. 6.—The relative extinction curve and asymptotic
decay rates, J/I°(A) < exp (—kv(A)7y), versus wavelength.
Values for A < 1500 A are derived from hypothetical extra-
polations of the Lillie and Witt w, g parameters as in Fig. S.
The extinction curve of Bless and Savage (1972) is used to
convert the asymptotic decay rates shown in Fig. 5 to a
common (visual) optical-depth scale. In spite of the sharp
increase of extinction at shorter wavelengths, when scattering
effects are considered, it is possible for the mean intensity to
decay more gradually with decreasing wavelength.

The transfer equation for the Whitworth model is,
from equations (2) and (4),

ol
pg=1— (1 —gJ— wgl,

—a- wg)(z- (}%‘;‘_’1) SN

This can be written

oI
”’a_‘re_l_we‘]9 (55)

where the “effective” optical depth and ““effective”
albedo are defined by

Te = (1 - wg)‘r,

_el—-g
We = —1—_'CE . (56)

Thus the Whitworth model is equivalent to an iso-
tropic scattering problem in rescaled variables 7, and
We.
Solutions using the Whitworth phase function can
be found as an appropriate rescaled case of isotropic
scattering (or the Henyey-Greenstein function for
g = 0). In particular, for given values of parameters
7., &, and w the Whitworth solution at optical depth
7 is the same as the isotropic solution for the param-
eters 7., = (1 — wg)r, g =0, and w, = (1 — 2w/
(1 — wg) at optical depth 7, = (1 — wg)r.
Whitworth advanced the phase function in equa-
tion (52) as a simplified model for the more compli-
cated Henyey-Greenstein function. Equation (53)
shows that Legendre expansions of the two functions
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agree through the first two terms, but then deviate
for higher coefficients—where Henyey-Greenstein has
g, = g' (not g). To determine the similarity in con-
sequences between the two phase functions, we under-
took a comparison of detailed models. We generated
a sequence of models with the Whitworth phase func-
tion by using the analogous isotropic case described
in the preceding paragraph and compared the mean
intensity of each model relative to its Henyey-Green-
stein counterpart.

Models with small optical depth agree quite well,
but as the optical depth increases, the agreement pro-
gressively deteriorates. That behavior arises from small
differences between the decay rates of the two models.
The asymptotic decay rates differ by at most 15%,,
the largest discrepancies occur for moderate values of
w and for values of g close to unity. So, for small
optical depths the effect on mean intensity can be
small, but any difference in the decay rate, however
small, will lead to large relative differences for
sufficiently large optical depths.

V. DISCUSSION

The techniques presented here allow one efficiently
and accurately to calculate the depth-dependent
radiation field in interstellar clouds. The procedure
is mostly analytic, involving no numerical sophistica-
tion beyond solving a characteristic equation with
real, positive roots and solving a real matrix equation
to derive the weighting coefficients from the boundary
conditions. The accuracy of solutions can be assessed
simply by extending the expansion to include more
terms. In many cases satisfactory solutions can be
obtained after truncation of the Legendre expansion
at third order (L = 3), which only requires solution of
a quadratic polynomial and inversion of a 2 x 2
matrix.

We have compared solutions for the mean intensity
in plane-parallel models obtained from the finite
Legendre polynomial expansion against solutions
derived by standard N stream techniques. For the
same number of terms, discrete angles or Legendre
polynomials, the Legendre expansion is more accurate.
This is not surprising since the isotropic incident field
already favors low order representations in Legendre
expansions. Since the Legendre technique readily
handles both plane-parallel and spherical clouds, it is
always to be preferred.

One important extension of the present methods
would be to cases where there are sources of photons
internal to the medium, as well as the photons incident
on the boundaries. Thus equations (1) and (2) are
replaced by

aol(r, = =
pZCB — )l ) - S 0], 6D

8¢, = 1 j plcos O)I(r, w)dQ' + S*(r) ,
(58)
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where S*(r) defines the strength of the internal sources. where I(r, n) satisfies equations (1) and (2) with
We remark that for the particular case of homo- I° = B, and can be found from the formulae of § II.

geneous sources, S*(r) = S*, with no incident radia-

tion, it is possible to give the solution in terms of the

case treated in this paper. Setting B = S*/(1 — w),

the solution can be written .
_ This research was supported in part by National
I(r,p) = B — I(r,pn), (59) Science Foundation grant AST 77-20370.

APPENDIX
PROPERTIES OF THE CHARACTERISTIC VALUES

In the P -approximation one can display equation (21) using a symmetric tridiagonal matrix D (we omit the
index m):

(——ho k T1TRo]
k —hl 2k .R]_
2k —hy, 3k R,
3k —hy Ry| 0. (A1)
i Lk :
The diagonal elements are
h=Ql+ 1)1 - woy). (A2)

From equation (10), the normalization of p(x) and the fact that |[P,(u)] < 1 for |u| < 1, it follows that |o;| < 1
for all values of /. Thus the diagonal elements 4, and their square roots 4,'/2 are positive and real for 0 < w < 1.
If we incorporate into each element of the vector R, the factor 4,'/2 and divide each row of the matrix by kA,2/2,
then the resulting matrix equation

—k-1 (hohy)~ 12 hot2R,
(hohy)~ 112 —k-t 2(hhg)~ Y2 || A V2R,

2(hyhg) 12 —k-1 ho'2R, =0, (A3)

matches an eigenvalue problem for a real, symmetric matrix, with eigenvalues that are inverses of the characteristic
values k. Thus the 2M solutions for k must be real.

To show that the roots occur in positive-negative pairs, note that if equation (A1) is to have a nonvanishing
solution for the coefficients R, then the determinant of the matrix must be zero F(k) = det | D,| = 0. This condi-
tion on k is called the characteristic equation. The determinant of the order 2M tridiagonal matrix can readily
be expanded by minors to obtain a recurrence relation in terms of the lower order determinants:

Fyk) = —ho, (Ada)
Fy(k) = hyhy — k2, (A4b)
Fik) = hF,_y(K) — PR2F; (k) . (Ado)

It is apparent that the dependence of the characteristic equation on k enters only through the factor k2. Thus,
the 2M roots are real and occur in pairs +k,, m = 1,2,..., M. .
The characteristic equation can also be expressed in terms of a continued fraction. With the definition
pr = lkn(Rim/R, -1 ) and equation (21) we have
12k
=" . (A5)
i b= prea
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From equation (22) it follows that p; = 1 — w. By using equation (A5) repeatedly, we find the representation for
the characteristic equation (van de Hulst 1970; Sobolev 1975)
k? 4k? 9k?
= T R (49
In the P, approximation, this continued fraction terminates after L terms. Other forms for the characteristic
equation are given in van de Hulst (1970).

REFERENCES

Abramowitz, M., and Stegun, 1. A. 1965, Handbook of Mathe- Lillie, C. F., and Witt, A. N. 1976, Ap. J., 208, 64.

matical Functions (New York: Dover). Roberge, W., Dalgarno, A., and Flannery, B. P. 1980, in
Bless, R. C., and Savage, B. D. 1972, 4p. J., 171, 293. preparation.
Case, K., and Zweifel, P. 1967, Linear Transport Theory Sandell, G., and Mattila, K. 1975, Astr. Ap., 42, 357.

(Reading: Addison-Wesley). Sobolev, V. V. 1975, Light Scattering in Planetary Atmospheres
Chandrasekhar, S. 1960, Radiative Transfer (New York: (New York: Pergamon).

Dover). Stief, L. J., Donn, B., Glicker, S., Gentieu, E. P., and Mentall,
Davison, B., and Sykes, J. B. 1957, Neutron Transport Theory J. E. 1972, Ap. J., 171, 21.

(Oxford: Clarendon). van de Hulst, H. C. 1970, Astr. Ap., 9, 366.
Henyey, L. G., and Greenstein, J. L. 1941, 4p. J., 93, 70. Whitworth, A. P. 1975, Ap. Space Sci., 34, 155.

BRIAN P. FLANNERY, WAYNE ROBERGE, and GEORGE B. RyBicki: Harvard-Smithsonian Center for Astrophysics,
60 Garden St., Cambridge, MA 02138

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://cdsads.u-strasbg.fr/cgi-bin/nph-bib_query?1980ApJ...236..598F&amp;db_key=AST

