Numerical integration
of RT

In a simplest case

Local Thermodynamical Equilibrium
(LTE, all microprocesses are in detailed
balance)

Static (no time dependence)
Simple geometry (e.g semi-infinit medium)

One dimension




Main equations

Equation of radiative transfer:

d
div =k, (x)-p ()T, + K, () p(x)-S, (x)

di
dt,
For the case of semi-infinit medium (e.g.

stellar atmosphere) boundary condition 1s
set deep (inside a star):

I, (t,)= B,(T,)

=—=1,+S,




Einstein coefficients

A ;- spontaneous de-excitation.
B, , - radiative excitation.
B, - simulated de-excitation.

Einstein relations connect the probabilities:
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Absorption/Emission
Energy absorbed:

Energy emitted:
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Probability profiles are area normalized:
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Absorption/Emission

Absorption coetficient expressed through
Einstein probabilities
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Emission coefficient:
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LTE (detailed balance for each frequency)
means that probability profiles are the same:
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Source function

Source function:
gbb _ jfb _ n,Av(v-v,)
g kfb [nlBlu¢(V —Vy)—n,B, v _Vo)]

LTE (detailed balance for each frequency)

means that probability profiles are the same:
PV —=Vy) =¥V —-v)=xV-V,)

Level population in LTE 1s described by the

Boltzmann distribution:
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Source function and
Absorption coefficient in LTE

Source function in LTE:
gbb _ nAWV—V) _
: [nlBlqu(V_VO)_nuBulZ(V_VO)]
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Absorption coefficient in LTE:

k' = Az nB,o(v—-v,) (1 —e MM )




Continuous opacity

Continuous opacity includes b-f
(photoionization) and f-f transitions.

Neutral Hydrogen is often a dominating
source due to i1its abundance.

For b-f transitions only photons with
energy larger than the difference between
the 1oni1zation energy and the energy of a
bound level can be absorbed:

hv = hR(:/n2 —mev2/2

This produces the absorption edges.




b-f transitions in Hydrogen

Paschen, A < 8206 A

Balmer, A <3647 A

Lyman, A <912
A




Total opacity in LTE

b-f and f-f opacities are described by the
same expression for opacity coefficient as
tfor b-b. Just B ; and the absorption profiles
are different.

The source function 1s still a Planck
function.

Total absorption:
__ I.bb bf I
k, =k, +k’ +k;




Line profile

The last thing left 1s the absorption probability
profile.

Spectral lines are not delta-functions due to three
effects:

— Damping of radiation

Lorentz
f_j%

— Perturbation of atomic energy level system by
neighboring particles

— Doppler movements of absorbers/emitters
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The convolution the Lorentz and Doppler profile
results in Voigt profile'
s &

H(a, v):_j(v—y) e ~dy




Now... we know everything

RT equation:

dx
Boundary condition:

:_kv'p'lv+kv.p'Sv

I,(t.)=B,(1,)

Absorption coefficient:
k, =k +k” +k”
Absorption profile:
H(a,v)

Source function
B,(I)




How good is LTE
for solving RT?




Stellar surfaces




Energy transport in stars

Radiation

Convection

Particle ejection
Waves o

Space above surface 1s not empty!




Solar corona

Low density:
<107 particle/cm?

Hot: >10° K
Optically thin

different from the
kinetic temperature
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Temperature of N > w NN
radiation 1s very !‘a b w'_‘- /




Coronal arcades on the Sun

Heating of the outer
layers 1s part of the
energy transport

Magnetic fields play a

major role

Coherent motions at &
the photosphere layers jiss
dissipate in the corona
making it hot ARt




How can observe space above
solar surface?

8 TRACE
8 28 May *98

At visual spectral range
photosphere dominates

White light

the total flux e Wit ight

UV lines allow to see
chromospheric
structures

1600 A band
12:10:20 UT

Going to X-ray 1s
required to observe 2
solar corona N,

pondt: ke
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Fe X/X 171A
12:15:10 UT




Practical implementation

Maxwellian velocity distribution:
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Boltzmann level population
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Solving RT

Simple minded approach: RK

d_y: fx)-y+gx); y(x,) =y,
dx

ki=f(x) y, +g(x)
4
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More clever RK. Previous example suffers from
all problems inherent to RK, specially of we deal
with complex medium where f and g have
complex behavior. Instead one can solve RK
analytically: ”

L) =1,(t)-¢ 5% 4 [B,(1)-¢ "D

T

\Y

In particular, this 1s usetul for a half-infinite
medium where we can easily use Gauss
quadratures for the integral:

1,00)= [ B,(1)-e""di =) o, B, (1,,)




The nodes and weights of Laguerre polynomials:

0.137793470540| 3.08441115765E-01
.729454549503|4.01119929155E-01
.808342901740 .18068287612E-01
.401433697855| 6.20874560987E-02
.552496140064 .50151697518E-03
.330152746764 .53008388588E-04
.843785837900 .82592334960E-05
.279257831378 .24931398496E-07

The only problem is that values of T are not

known in 7,,, We can find them solving ODE for
optical depth: i

dr,  k,(x)-p(x)’

Advantages: simple boundary conditions and right
hand side does not depend on unknown function.
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4th order Runge-Kutta for geometrical depth

de 1 ; X, =0

dr, k (x)
= 1 1

k() > (x + ik, 2)
1 ]
k, ('xi T hk2/2) e k, (xi T hk3)

k, =

X, =X +§(k1 +2k, + 2k, +k,)

We integrate the equation for x from O to each of

the 7,,; consecutively. For each x; we find the
temperature and then intensity using Gauss
quadrature.




