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1. Introduction
1.1. Motivation

This is a quick and dirty guide to molecular spectroscopy. It is meant to be used as a tool for
learning and remembering which rotational lines exist and can be observed. Nothing can supplant
the excellent discussion in Townes & Schawlow’s Molecular Spectroscopy (1975) and Gordy &
Cook’s Microwave Molecular Spectra (1984) (hereafter T'S75 and GC84). If you wish to understand
the details, you should look at these two books first. With this guide I hope to fill in some the
pedagogical gaps that I encountered while learning this subject. Nothing helps me learn faster
and with better retention than examples, examples, examples! Therefore, for every case discussed,
I have included at least one (if not more) astrophysically observed examples with energy level
diagrams and a discussion of why the rotational spectrum looks the way it does.

I have broken down the guide into 3 main sections: linear molecules, symmetric top molecules,
and asymmetric top molecules in electronic states with no projected electronic orbital or spin angu-
lar momentum. Eventually, I shall write a section on molecules with electronic angular momentum
(specifically 2%, 3%, and 2II states). Each section has a subsection on hyperfine structure for that
particular type of molecule.

All of the spectroscopic data is from the JPL line catalog (http://spec.jpl.nasa.gov/), Lo-
vas line catalog (http://physics.nist.gov/cgi-bin/micro/table5/start.pl) and Cologne Spectroscopy
Database (http://www.phl.uni-koeln.de/vorhersagen/). These webpages are extremely useful. I
have used them on many occasions at the telescope (for instance, to check to see what lines may
lie in the opposite sideband). T hope that this proves to be a useful guide.

1.2. Permanent Electric Dipole Moments

The vast majority of molecular rotation spectra observed are due to a electric dipole transition
in molecules that have a permanent electric dipole moment. A molecule has a permanent electric
dipole moment, u, if there is a charge imbalance in the molecule. Molecules which are highly
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symmetric, such as Hg, No, O9, and CH4 do not have permanent dipole moments. Figure 1 shows
examples of molecules with and without permanent electric dipole moments.
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Molecular Hydrogen
Carbon Monoxide
No
Methane
Yes
Yes
Formakdehyde Water
Fig. 1.— Molecules with charge imbalances have permanent electric dipole moments. A green YES denotes a

permanent electric dipole moment and a red NO denoted no permanent electric dipole moment. The top row shows
linear molecules Hy and CO. The second row shows symmetric top molecules NH3 and CH4. The third row shows
asymmetric top molecules HoCO and H>O.
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1.3. Basic Molecular Shapes

o An orthogonal coordinate system can always be found such that the moment of Interia tensor,
I, is diagonal (see Marion & Thornton 1988, Classical Dynamics, §10.4). Molecular shapes are
always classified in this coordinate system by the non-zero diagonal components of ?: I, I, and
I,. There are four fundamental shapes: linear (I, = I, I, = 0), symmetric top (I, = I, < I, or
I, < I, = I), spherical top (I, = I, = I,), and asymmetric top (I, # I, # I, # 0).

1.4. Electric Dipole Transitions

The parity of the wavefunction, or the symmetry of the wavefunction after inversion of the
coordinate system (z,y,2) — (—z,—y, —z), is extremely important for determining the multipole
of raditation in a transition. Nearly all astrophysically important molecular transitions are electric
dipole. From Figure 2, we see that electric dipole transitions require the two rotational levels to
be antisymmetric with respect to each other. The symmetry properties of the rotational levels will
determine which tranistions exist and therefore determine the selection rules.
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— = — v
S
X
Electric Quadrupole
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< > ’ y
Fig. 2.— The Parity of electric dipole, magnetic dipole, and electric quadrupole tranisitions are shown. The axes

on the right represent an inversion of the coordinate system.
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2. Linear Molecules — '3 Electronic State
2.1. Rotational Spectrum

A linear molecule has all of its nuclei along a single symmetry axis of the molecule. We can
understand the basic rotational spectrum by modeling the molecule as a rigid rotor (i.e. no vibration
or stretching and the distance of each nucleus remains fixed with respect to the center-of-mass).
The Hamiltonian is defined by

H=T+Y, (1)

where T is the kinetic energy and V is the potential energy. We will set the potential energy equal
to zero (V' = 0). Classically, we find the kinetic energy of a rotating system to be

J?

T:ﬁ’

(2)

where J is the angular momentum and I is the moment of Inertia of the molecule. We simply

replace the angular momentum, J?2, in equation (2) with the quantum mechanical operator, J2, to
form the rotational Hamiltonian .
A J?

Hypt = — 3

rot 2’ ( )

where we have ignored electronic and vibrational motions (the Born-Oppenheimer approximation).

Space Axis

Fig. 3.— The vector model for a rotating linear molecule.

Quantum mechanics tells us that when we operate on a wavefunction with the Hamiltonian

and angular momentum operators, we find

A

HyqV = EY (4)



- 5=

R h2
J2U = 2+ 1) (5)
JsU = hM T, (6)

with J equal to the rotational quantum number and J7 denotes the projection of the total angu-
lar momentum on a fixed axis in space, which we will denote Z (see Figure 3). The rotational

wavefunction is described by quantum numbers J and M. Using Dirac notation we can write
U =|JMy).

When we discuss molecules with electronic angular momentum, the rotational angular momen-
tum of the nuclear framework is denoted O instead of J. J is reserved for the total rotational and
electronic orbital angular momentum. Only when the projection of the electronic orbital angular
momentum on the bond axis and total electronic spin angular momentum are zero (A = 0 and
S=0)is J=0 (i.e. a 'Y state). However, J is traditionally used for linear molecules in 'Y states.

The rotational energy levels are found by substituting the eigenvalue of J? (Equation (5)) into
the rotational Hamiltonian operator (Equation (3)) to give

Fe " J+1) = hBIT +1), 1)

8m2l
where B = - is the molecular rotation constant (N.B. in Dirac notation E = (JM|H,o|JMj)).
8wl
The selection rule for electric dipole transitions of linear molecules in the '3 state is AJ = +1.
The frequency of a transition from J =J+1 — J is

E - F
Vitimg = = = 2B(J +1). (8)

In reality, the energy levels of a linear molecule are modified by centrifugal stretching and vibrations
of the nuclei about their equilibrium positions. These modifications are generally minor but very
important for accurate calculations. The first order correction for centrifugal distortion is —D.J?(J +
1)2, with D on the order of a few hundred kHz (see Atkins & Friedman 1997, Molecular Quantum
Mechanics, §10.4). The rotational constant, B, is on the order of a few tens of GHz (see Table
1). The corrections become more important at higher J levels as the centrifugal distortion is
proportional to J*.

In the rigid rotor approximation, we can see two important aspects of the rotational spectrum
of linear molecules. The energy levels are spaced quadratically (E = 0,2B,6B,12B,...). The
frequency of transitions with AJ = —1 are spaced linearly (v;41-; = 2B,4B,6B,...). This latter
property is extremely useful for gauging the frequency for higher J transitions (e.g. the J =1 — 0
CO transition is at 115 GHz; therefore, J =2 — 1 is at 230 GHz and J = 3 — 2 is 345 GHz, etc.).
Table 1 lists the rotational constant, B, and electric dipole moment, p, for many astrophysically
observed linear molecules. Figure 4 shows the energy level diagrams for some example linear
molecules.
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Fig. 4.— The energy level digram of CO, '*CO, C'®0, CS, HCO™, and DCO™ for all energy levels less than 40
K above the ground state. The vertical axis is the energy above ground, E/k, in K. All energy level diagrams are
plotted on the same vertical scale. Notice that heavier molecules, such as CS, have more closely spaced energy levels.
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2.2. Hyperfine Structure - Linear ! State
2.2.1. Single Coupling Nucleus

Hyperfine structure is due to two separate interactions: electric quadrupole and magnetic
hyperfine coupling. Typically, electric quadrupole coupling is much stronger for molecules in !X
states. For nuclei with nuclear spins, I, equal to 0 or 1/2, the nuclear charge distribution is
spherically symmetric and there is no electric quadrupole moment. Nuclei with nuclear spin greater
than 1/2 have electric quadrupole moments. The nuclear electric quadrupole moment couples with
the gradient of the electric field at the nucleus. Nuclei with a nuclear spin greater than 0 can
have a dipole magnetic moment. Magnetic hyperfine coupling is the coupling between the nuclear
magnetic moment and the magnetic field generated by molecular rotation. Table 2 and Figure 4 list
nuclear spins for nuclei commonly found interstellar molecules. Hyperfine structure is commonly
observed in molecules that contain H (I = 1/2), D (I = 1), N (I = 1), and 7O (I = 5/2) nuclei

(see Figure 4).

Spin 0 (xc)
spin12| @

spin1 | @

Spin 3/2

Spin 5/2

Fig. 5.— The spin of nuclei in common astrophysically observed molecules.
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The hyperfine quantum number, F, is defined such that F = I'+ J is the total molecular
angular momentum, where I and J are the nuclear spin and rotational angular momentum of the
molecule respectively (f and J precess around ﬁ; see Figure 6). Then,

F2=(T+ =012+ J%+2IJ, (9)
F=J+1,J+I1-1,..,|J -1 (10)

Equation (10) is sometimes called a Clebsch-Gordon series.

Vector Model Space Axis

Fig. 6.— The vector model for the hyperfine structure of a linear molecule in a 'Y state.

Selection rules stipulate that AF = 0,41 and AJ = +1. Equation (10) determines which
hyperfine levels exist and the selection rule determines which transitions exist. I shall discuss
the hyperfine energy level structure for HCN (I(}*N) = 1) and C'TO(I(}"0) = 5/2). Almost all
hyperfine structure in linear molecules in a 'Y state can be understood from these two examples!

The N nucleus in HCN is responsible for strong hyperfine coupling (N.B. in Table 2, '“N has
the strongest electric quadrupole moment by a factor of 4). The spin of 14N is I = 1. Equation (10)
shows that the J = 0 level remains unsplit (F = 1), the J = 1 level splits into a triplet (F = 2, 1,
0), and the J = 2 level also splits into a triplet (F = 3, 2, 1). The selection rule allows 3 transitions
from J = 1 — 0 and six hyperfine transitions from J = 2 — 1. Since I = 1 and the Clebsch-Gordon
series (equation (10)) terminates with F = |J — I|, all of the levels with J > 2 will also be split into
triplets. Figure 7 shows the energy levels for J = 0, 1, and 2.
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Fig. 7.— The hyperfine energy level structure of HCN and C'70 for J = 0, 1, and 2. The vertical axis is the shift
in energy (AE = Eg + Eu) in kHz. Note the vertical scale is different for HCN and C*70.
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A good example of I = 5/2 hyperfine structure is C'7O. Using equations (10), we see that the
J = 0 level remains unsplit (F = 5/2), the J = 1 level splits into a triplet (F = 7/2, 5/2, 3/2), the
J = 2 level splits into 5 hyperfine levels (F = 9/2, 7/2, 5/2, 3/2, 1/2), and the J = 3 level into
6 hyperfine levels (F = 11/2, 9/2, 7/2, 5/2, 3/2, 1/2). The selection rule allows three hyperfine
transitions from J = 1 — 0, nine hyperfine transitions from J = 2 — 1, and 14 hyperfine transitions
from J =3 — 2. All of the transitions for J = 2 — 1 are listed in Table 3 and the energy levels for
J =1 and J = 2 are shown in Figure 7. All levels with J > 3 will be split into 6 hyperfine levels.
Figure 7 shows the C17O spectrum for J =1 — 0 and J = 2 — 1 using the techniques discussed in
Section 2.2.2.
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Fig. 8.— The hyperfine spectrum of C'"O J =2 — 1 and J = 1 — 0. The vertical axis is relative intensity and the
horizontal axis is velocity (km/s) in the rest frame of the molecule.
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2.2.2.  Frequency of Hyperfine Transitions and Relative Strength

The energy shifts due to electric quadrupole and magnetic hyperfine coupling are treated as
perturbations of the rotational Hamiltonian. First I will treat the electric quadrupole coupling,
then the magnetic hyperfine coupling. The following treatment is a distilled version of Ramsey
(1953), Townes & Schawlow 1975 (TS75), and Gordon & Cook 1984 (GC84).

To first order, we can write the perturbation due to an electric quadrupole moment as
AEg = (I,J,F, Mp|Hg|I, J, F, Mp), (11)

where we have assumed that J is a good quantum number (i.e. that I:IQ is diagonal. In reality, I:IQ
is not exactly diagonal and J is perturbed by nuclear interactions. But, I will show later that second
order effects are negligible). To solve Equation (11), we need to find an expression for the electric
quadrupole Hamiltonian. Both TS75 and GC84 contain lucid derivations. The final solution for a
linear diatomic molecule is given by

T3+ 37T - P2
2I(2I —1)(2J —1)J(2J + 3)’

A~

Hg = —eQq

(12)

where e is the charge, Q is the electric quadrupole moment, and q describes the magnitude of the
component of the electric quadrupole tensor (¢z; = qyy = —%qzz = ¢ because the field gradient at
the nucleus is symmetric about the bond axis). By using Equation (9) we can solve for the energy
perturbations by evaluating the eigenvalues for (f . j)Q, I f, and I2.J2 ,

- - 1 1
(LLE-JILJF) = S[F(F+1)-IIT+1)-J(J+1)] =350 (13)
. 1
(ILJ,F\(I- D2\, F) = 0 (14)
(I,J,FIPJ*I,J,F) = I(I+1)J(J+1), (15)

(N.B. even though the vector notation is used, I-J etc. are operators). Plugging in the eigenvalues,

we find
[2C(C+1) - I(I+1)J(J+1)]

2121 —1)(2J —1)(2J +3)

where —e(@)q is the quadrupole coupling constant and the remaining expression on the right is

AEqQ = —eQq (16)

Casimer’s function (sometimes denoted Y (I, J, F')).

As mentioned above, the Hamiltonian, I;TQ, is not exactly diagonal due to perturbations of the
rotational angular momentum, J. As a result, second order perturbation theory could be used to
obtain a more accurate energy shift. However, TS75 show that the magnitude of this effect is of
the order EQ%. Second order perturbations are typically 5 orders of magnitude smaller than electric
quadrupole coupling and 3 orders of magnitude smaller than magnetic hyperfine interactions. First
order perturbation theory is more than sufficient for the current resolution of submm spectrometers.
Second order corrections can be found in TS75 Appendix 2.
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As with nuclear electric quadrupole coupling, there is coupling between the nuclear magnetic
moment and the magnetic field generated by molecular rotation. We can calculate the magnetic
coupling energy with

AEy = (I, J,F, Mp|Huy|1, J, F, M), (17)
where Hy = —fi - H, rpand p ~ I is the nuclear magnetic moment and H, I~ J is the effective
generated magnetic field. For a linear dipole molecule, the magnetic coupling Hamiltonian can be
reduced to (again, see TS75 and GC84)

Hy =CiT-J, (18)
where C7 is the nuclear magnetic coupling constant (the only non-zero element of the nuclear

magnetic coupling tensor, Cy, = Cyy = Cf). Plugging in the eigenvalue of I+ J from Equation(13),
we find the energy perturbations due to magnetic coupling are

AEy = % [F(F+1)—II+1) - J(J +1)]. (19)

The total frequency shifts relative to the unshifted frequency due to electric quadrupole and
magnetic hyperfine coupling are given by

AFE; — AFE
Vif — Vynsplit = ZTJC’ (20)

where i is the initial F' level, f is the final F level, and AE = Eq + E).
The relative strengths can be calculated by using irreducible tensor methods (see Gordy & Cook

(1984) Chapter 15). We define the relative strength such that the sum of the relative strength, s,
of all transitions from F' — F for a given J' — J are equal to one (see Rudolph 1968):

Y sIJ'F' — IJF)=1. (21)
F'F
The relative line strengths are calculated in terms of a 6 — j symbol,
2
QF+1)2F'+1) | I F' J
(2I +1) 1 J F ’

With the aid of 6 — j Tables (Edmonds 1974), and the property that 6 — j symbols are invariant
with permutation of the columns, we find the appropriate 6 — j symbol for each transition:

1 F 7 " ala+l)(a—20-1)(a—20) ”s
1 J-1 F—-1 | (2F-1)2F(2F +1)(2J —1)2J(2J + 1) (23)

s(IJ'F' — IJF) = (22)

1 F 7" 2a+D(a—20)a—2F)(a—2J+1) -
1 J-1 F [ 2FQ2F+1)(2F +2)(2J —1)2J(2J + 1)
1 F 7 " @-2F-1)(a—2F)(a—2J+1)(a—2J+2) ”e
1 J-1 F+1 |  (QF+1)Q2F +2)2F +3)(2J —1)2J(2J + 1)’ (25)

where a = F + J + 1.
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2.2.3.  Multiple Coupling Nuclei

There are a few important linear molecules with multiple coupling nucleii. Important astro-
physical examples include NoHT, NoDT, and DCN. In gerneal, there are two coupling schemes for
multiple coupling nucleii. For hyperfine coupling when one nucleus has a much stronger coupling
strength than the next nucleus (e.g. (eQq)1 >> (eQq)2, etc.) we use the basis |JF 1 Fy---F >
where

ﬁ1 = f1+f
ﬁQ = f2-|—ﬁ1

—

F = I+ F, (26)

where I; is the spin of the i’® nucleus and F; =F;+I;,F;+1; — 1,---,|F;—I;| for each hyperfine
quantum number. For hyperfine coupling when the nucleii have equal coupling strength we use the
basis |JZoZ3---ITF > where

f2 = f1+f2
fs = fz-l-I_;,

M N

= I+4J. (27)

Both NoH' and NyD™T are examples of molecules with unequal coupling strengths and therefore
use the first coupling scheme. The second coupling scheme is more important in molecules with
higher degrees of symmetry (e.g. DoO where the hyperfine coupling strengths of the two D nucleii
are indentical). T shall explain the observed hyperfine structure for NoH™.

The hyperfine engergy levels for NoH' can be formed by using the Clebsch-Gordon series due
to the outer nitrogen (F1) and due to the inner nitrogen (F). The hyperfine coupling constants are:
(eQq)1 = —5.6902 £ 0.0021 MHz, (eQq)2 = —1.3586 £ 0.0038 MHz, C; = 11.8 £ 0.4 kHz, Cy =
8.7 £ 0.6 kHz (Caselli, Myers, & Thaddeus 1995). For the J= 0 level, the outer nitrogen results in
only one energy level F1 =1 (see Figure 8). The inner nitrogen further splits the F; =1 level into
three energy levels: F= 0,1, 2. For the J=1 level, the outer nitrogen coupling results in the triplet:
F1 = 0,1,2. The inner nitrogen splits the F; = 2 level into a triplet (F= 1,2,3), the F; = 1 level
into a triplet (F= 0,1, 2), and the F; = 0 level does not split and becomes F= 1. Thus, the J=1
level is split into seven hyperfine level and the J= 0 is split into three energy levels when coupling
from both nucleii are included. If we continue to higher J levels, we will see that each level from
J= 2 and higher is split into nine hyperfine levels.

Selection rules are similar to the single coupling case: AF; = 0,£1, AF= 0,+1 with 0 50,
AJ= +1. Therefore, in the J= 1 — 0 transitions of NoH' and NoD™T, there are fifteen allowed
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transitions. However, since the J= 0 splitting is very small, only seven transitions from the seven
hyperfine J= 1 levels are observed (Figure 9). Recently the hyperfine structure of NoH™ and NoD*
up to the J=3 — 2 transition has been calculated and observed (Gerin et al. 2001).

N, H*

F1=2 e F=3
Ix- F=2
° F=1
J=1 r F1=1 o F=2
- S0 F=1
% k F=0
. F1=0
- Fa=1
J=0 F, =1 S F =
i - F=1
S — F=0

Outer Nitrogen Inner Nitrogen
Splitting Splitting

Fig. 9.— Diagrammatic representation of the hyperfine energy levels for NoH J= 1 — 0. The J= 0 level is not
actually split into seperate energy levels. The seven observed transitions from the seven upper hyperfine levels are
shown.

2.2.4. Multiple Coupling Nuclei - Energy Levels & Strength

Calculating the hyperfine energy levels for multiple coupling nuclei is more complicated. Irre-
ducible tensor methods provide elegant and tractable techniques and are used in all modern papers
(see The Journal of Molecular Spectroscopy, etc.). The hyperfine Hamiltonian for n coupling nuclei
can be expressed as as

n

Hpps = Z [V(Q) (4) - Q(Q) (4) + m(l)(i) 'M(l) (Z)] + Hpin—spin (28)
i=1

where V() (i) and Q? (4) are the second rank electric field gradient and electric quadrupole spher-
ical tensors at the i*® nucleus, m™ (i) - x(V) (i) is the magnetic dipole interaction in spherical tensor
notation, and Hgpin—spin is the hyperfine Hamiltonian due to spin-spin interactions between nu-
clei and is usally negligable for astrophysical spectroscopy (the interaction for 2 nuclei is given by
Hpin—spin = — \/5/—2 [Dg) X Igl)](l) -Igl), where D%) is the second rank spin coupling spherical tensor
- see GC84 section 15.5). Expressions for the matrix elements of V(%) (7). Q®) (i) and m™ (3) - ™M) (4)
for the two coupling schemes can be found in Chaper 15 of GC84 (e.g. equations 15.102, 15.103,
15.115, & 15.116). The matrix element for the electric quadrupole interaction and the magnetic
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dipole interaction for two unequal coupling nuclei in a linear moelcule is given by (see GC84)

ABy - (=1)"(eQq)1J ){ﬂ I J}

J 2 J I 2 J L
2(2J +3
e (0 (0

(=1)"(eQq)2J(2F1 +1)

S DN
~
— =

_|_
erea (35 5)( 50 %)
I, Fy J F I, F
x{;;Fl}{2F21121} (29)
ABy = (DG +1)@] +1)]1/2[Iz<11+1)<211+1)]”2{ Y }
1
+ (1)TCY2F + V)[J(J +1)(2J + V)]V [Ia(Iy + 1)(2L + 1)]*/2
L, F, J F I, F
{leFl}{lFQlIf} (30)

wheret = J+ 11 + Fy and r = J+ I) + I + 2F; + F. These equations represent the first order
pertubation to the energy levels for unequal coupling nucleii. For equal or nearly equal coupling
nucleii, a similar set of expressions based on the coupling scheme given in equation (28) and (29)
is derived (see GC84). If we ignore the second term in AFg and AF};, then we recover the same
expressions derived section 2.2.2 for a single coupling nucleus. We extend the method used to
calculate the relative strengths to find the relative strength for two coupling nuclei (electric dipole
transitions)

(2F! 4+ 1)(2F, + 1)(2F' + 1)(2F + 1)
(26 + 1)(2L> + 1)

2 2
y L FJ L, F' F! 31)
1 J F 1 F, F '

The 3j and 6j symbols needed in equations (29 - 31) can be found in Edmonds (1974).

s(JJFIF' - JFF) =
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3. Symmetric Top Molecules
3.1. Rotational Spectrum

Symmetric top molecules are molecules that have a symmetry axis with the two principle
moments of Inertia equal. We can define a coordinate system (called the body axes), (z,v, z), with
z along the molecular symmetry axis. In this coordinate frame, the moment of Inertia tensor is
diagonal and the moments of Inertia about the two axes perpendicular to the symmetry axis are
equal, I, = I,. The designations A, B, and C are traditionally used instead of x, y, z. Therefore,
I, and I, — Ip and I, — I4 or I, — Ic depending on whether I, is greater than (prolate) or
less than Ip (oblate; see Figure 10). Therefore, symmetric top molecules are classified into three
categories: spherical tops with Iy = Ip = I¢; prolate symmetric tops with I4 < Ip; and oblate
symmetric tops with I > Ig. Linear molecules are just a special case of symmetric tops in which
Ip = 0. Tt should be noted that the body coordinates axes, (z,y, ), are not fixed in space (they
precess) and should not be confused with the fixed space axes (X,Y, Z).

Oblate Prolate

A

iﬁ -
=

Ia=Ig<lic Ia<Ilg=Ic

Fig. 10.— Oblate and prolate symmetric tops.

In the body coordinate frame of the molecule, we find the total kinetic energy of rotation to
be (see equation (2)),

HR
= i + Y 4 i’ (32)
2I, 21, 21,
and the total angular momentum is
=T+ T+ T (33)

In the classical symmetric top, the total angular momentum, J_; and its projection on the symmetry
axis in the body frame, J;, are constants of the motion. In quantum mechanics, both of these
quantities are observable (i.e [J,, Hyo;] = 0 and [J?,J,] = 0). We can rewrite the kinetic energy
in terms of J and J, by substituting equation (33) into (32) and changing to the A,B,C notation
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(since most molecules observed are prolate, we will use that designation; for oblate molecules, then
simply substitute A — C)

J? 1 1
T:EJFJZQ(———). (34)

Body Axis Space Axis

Fig. 11.— The vector model for a symmetric-top molecule.

Classically, the total angular momentum is fixed in space and fz precesses about J. However,
due to the uncertainty principle, we cannot measure the total angular momentum’s magnitude
and direction in space simultaneously. We can only measure the total magnitude of the angular
momentum squared and the projection of the total angular momentum on a fixed space axis, Z.
Thus, there are 2 projections of the total angular momentum that are good quantum numbers, the
projection on the space axis, Jz and the projection on the molecular body symmetry axis, J, (see
Figure 8). The eigenvalues are found to be

2
J?U = 4%J(JJr 1T (35)
J, U = %MJ\IJ (36)
J, U = %qu (37)

where K is the quantum number of the projection on the molecular symmetry axis and the wave-
function is given by ¥ = |J, K, M) in Dirac notation.

Since K is a projection of f, K can take on the values K = —J,—J+1,...,J —1,J. K values at
+J, £(J — 1), etc. are degenerate unless an asymmetry splits them (as we will see in asymmetric
molecules). The energy of a symmetric top is then found by substituting the eigenvalues into the
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the rotational Hamiltonian to give

h2J(J +1) o [ h? h? 2
F=—F%--+—"+K - =hBJ(J+1)+hK“(A-B 38
8217, 8m2l4 8m2lp (J+1)+ ( ) (38)
where A = % and B = % are now the rotational constants (in Dirac notation E =

(J, K, M;\ﬁmtu, K, Mjy)). Selection rules stipulate that AJ = 0,£1 and AK = 0. Note that
AJ = 0 is now allowed (since £K are degenerate, each Jx level has both symmetric and anti-
symmetric degenerate levels). However, if we try and calculate the frequency of a transition from
J+1,K — J, K, we find that vy g7k = hB(J + 1) and the K dependence cancels out! In the
rigid rotor approximation, transitions for different K levels are not resolved! But, the rigid rotor
is no longer a good approximation and we must include effects such as centrifugal distortion to

calculate the energy levels Jx and resolve transitions in different K ladders. For details, see TS75
and GC84.

A good example of a prolate symmetric top molecule is methyl acetlyene (CH3CCH). The first
three K ladders of the methyl acetlyene energy level diagram are shown in Figure 12. The energy
levels are organized by the K quantum number since transition between different K are forbidden
for electric dipole transitions. Notice that the lowest J level in each K ladder is J=K. Also, the
energy of the lowest J level in each K ladder increases quadratically above the ground state energy
(as it does for the linear molecule). Transitions in different K ladders for the same J+1 — J occur
closely spaced in frequency. For instance, notice that the frequency of the J = 3 — 2 transition
for different K ladders are all near 51.27 GHz. This means that symmetric top molecules provide a
very rich spectrum in which many transition are closely spaced in frequency for a given J+1 — J.

EXAMPLE:

The first 4 K-ladder transitions of the J = 13 — 12 transitions of CH3CCH lie within 39 MHz of each
other:

130 — 120 222.1669700 GHz
13; — 12; 222.1627287 GHz
135 — 125 222.1500084 GHz
133 — 123 222.1288080 GHz

By choosing a central frequency, such as 222.147889 GHz, all four transitions can easily be observed
simultaneously with a 50 MHz high resolution spectrometer.
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CH3CCH Rotational Levels

C £ ]
L » : _
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Fig. 12.— The rotational energy level diagram for CH3CCH. The vertical axis is energy in units of K. The first
three K ladders are shown up to J=4. The A and E above each K ladder refers to the C3, symmetry species. All
transition frequencies are in units of GHz and are displayed accurately.
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3.2. Inversion Splitting

A few astrophysically important molecules (NHz, H30™") can undergo inversion that splits each
of the rotational levels into 2 separate levels. The best example is NH3. The N nucleus can tunnel
through the plane of the 3 H nuclei, oscillating between two equilibrium positions. Figure 13 shows
the potential energy curve for the oscillating nitrogen. If we denote the wavefunction by ¥ and
Wk when the nitrogen is in the left and right potential energy minima, then the total wavefunction
can be formed from symmetric and antisymmetric combinations of these two wavefunctions,

Uy =— (¥ + TUg) (39)

1
\/i
v = % (T) — Tp) . (40)

Therefore, each rotational level is split into 2 levels denoted by the symmetry of the inversion level
(+ or —).

Potential along Z-axis

Z
A
Hs Plane .
\/nhal Barrier V
N equilibrium position
Z
Fig. 13.— Inversion of the Nitrogen in ammonia. The potential energy curve along the Z-axis is shown to the left.

In the fundamental inversion transition, the Nitrogen tunnels through the Hs potential barrier at 23.6 GHz.

Selection rules stipulate that the parity must change for electric dipole transitions; therefore,
transitions must change inversion level symmetry (+ — —). The potential barrier must be low for
inversions to occur. In practice, only a few molecules have observable inversion levels (e.g. NHjs,
NH;,D). When the potential barrier becomes infinite in height, the inversion levels are degenerate.
This is the case for CH3CCH shown in Figure 12. The energy level diagram for NHj is shown in
Figure 14. Transition between inversion levels for the same Jx are typically in the cm part of the
spectrum (i.e. the inv(1,1) transition for NHj is at 23.694 GHz). Because NH3 has 3 H nuclei, the
overall wavefunction obeys Fermi-Dirac statistics. Spin statistics eliminate 1 inversion level for the
K = 0 ladder (for details see §3.4 of TS75). The rotational transitions with AJ = —1 occur in the
submm and far-infrared part of the spectrum.
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Rotational Energy Levels of NH;

[ J=3 ——— i
: J=3 +—= 22.235 GHz
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Fig. 14.— The rotational energy level diagram for the oblate symmetric top NHs. The vertical axis is energy above
ground in K. All energy levels are displayed accurately. Only the first two K ladders up to J=3 are shown. The +
and — refer to the symmetry of the inversion level. Effects of hyperfine splitting are not shown.
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3.3. Hyperfine Structure - Symmetric Top

Since nearly all astrophysically important symmetric top molecules have a pyrimidal -Hg struc-
ture (Cs, symmetry, or unchanged by rotation of 120°), each molecule exhibits a rich hyperfine
pattern. As in the linear case, the hyperfine splitting is dominated by electric quadrupole coupling.
In the case of CH3CN and NHj3, the N nucleus dominates the hyperfine splitting. The equations
used to calculate the energy shifts remain the same for symmetric top molecules with the cou-
pling nucleus along the symmetry axis, but with the electric field gradient tensor multiplied by an
additional term accounting for the off axis nuclei

J 3K? _] ()

”:q@J+$[ﬂj+n

The term in brackets would be multiplied into equations (16) and (29). The hyperfine splitting
occurs for each Jg rotational level. I shall describe the hyperfine levels for two common symmetric
tops, CH3CN (ignoring -H3 coupling) and NHj3 (including -Hs coupling).

The hyperfine structure of symmetric top molecules is analogous to the linear case. A Clebsch-
Gordon series is formed for every rotational level, Jg. In the case of CH3CN, the electric quadrupole
coupling due to the N splits each rotational level with J > 1 into a triplet. Using the usual selection
rules, AF = 0,%1, there are 6 allowed transitions (see Figure 15).

In general, the splitting due to H3 is much less than the N. However, in the case of NH3 both
must be taken into account. Figure 16 shows the hyperfine splitting due to the N and due to Hs.
Since the three H nuclei are in symmetric positions in the molecule, they contribute equally to
hyperfine splitting. The 3 H spins are combined into a single quantum number, Iz;. Therefore, the
quantum numbers for NH3 follow the hyperfine spltting scheme for 2 coupling nuclei (J F; F).
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CHCN6 —5
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Jeb 4"
—-'“_ F=6
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~ '
N — F=4
K=0 N hyperfine structure

Fig. 15.— Diagrammatic representation of the hyperfine splitting of the Jx = 69 and 5¢ energy levels of CH3CN.
The electric dipole allowed transitions are shown in green and range from 110.3820283 GHz to 110.3852193 GHz (JPL
line catalog). Actual hyperfine shifts of the energy level are not shown.
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Fig. 15.— Hyperfine splitting in NH;. Figure was pinched from Ho & Townes 1983, ARA&A.
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4. Asymmetric Top Molecules
4.1. Rotational Spectrum

Asymmetric top molecules have none of the three principle moments of Inertia of the molecule
equal. Typically, we write the moment of Inertia in the order, I4 < Ig < I¢. Asymmetric tops are
classified into prolate asymmetric tops (Ig — I¢) and oblate asymmetric tops (Ig — I4). We can
define the degree of asymmetry using Ray’s asymmetry parameter,

2B—A-C

FETa—c (42)

where A = 87r2 5 B = 7r2 5 and C' = 7r2 o . A molecule that is the most asymmetric would have
k = 0. A prolate asymmetric top has kK — —1 and an oblate asymmetric top has x — +1. Table 5

lists the molecular parameters for a few asymmetric top molecules.

Since there is no longer a symmetry axis in the molecule, there is no longer an internal com-
ponent to the angular momentum that is a constant of the motion (as J, was in the symmetric
top). Now we find [J,, Hyor] # 0 and [J,, J?] # 0. In fact, expressions for the energy levels are
found in term of expansions (for instance, using linear combinations of symmetric top wavefunction,

|JKMy)). Details can be found in T'S75 and GC84.

There is still a convenient way to describe the energy levels of an asymmetric molecule. In the
symmetric top, we could not distinguish between degenerate K levels (K = +J, £(J —1),...). Now,
due to the asymmetry, we can now distinguish between different projections of J on an internal
axis in the molecule. The quantum numbers are given as Jx_, k., where K_; is the projection of
J in the limit that the molecules is prolate and K is the projection of J in the limit that the
molecule is oblate. Sometimes, K;; and K_; are also denoted by K4 and K¢. Ki; are NOT
good quantum numbers, they are merely used to keep track of the order of energy levels. They are
most useful when a molecule is very nearly prolate or very nearly oblate. In the prolate case, the
energy levels would be ordered: 0o, 101, 111, 110, 202, 212, 211, 221, 220, ... increasing in energy above
ground (000). In the nearly oblate case we find: 0gg, 110,111, 101, 220, 221, 211, 212, 202, ... increasing
in energy above ground (0g9). Notice the order of the levels are opposite for nearly prolate and
nearly oblate molecules.

The selection rules for asymmetric tops depend on the symmetry properties of the total wave-
function (electric dipole transitions require a change of parity). The selection rule for J is the same
as for the symmetric top: AJ = 0,+1. The selection rules for AK_; and AK_; depend on whether
K_; or K4 is even or odd. Table 6 lists the selection rules. For most astrophysical applications,
the AK1q = £2,43,... are highly unlikely. So, for a molecule with y along the principle axis
with the least moment of interia (i.e. HoCO, py # 0), transition between K_; ladders are highly
unlikely and AK; = £1. These transitions are sometimes called “a-type” transitions. For a more
asymmetric molecule with y along the principle axis with the intermediate moment of interia (i.e.
H9O, up # 0 ), AK 1 = +1 and AK,; = +1. These transitions are sometimes called “b-type”
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transitions. For a molecule with y along the principle axis with the greatest moment of inertia (i.e.
NH3D, pc # 0), transitions between K1 ladders are unlikely and AK_; = £1. These transitions
are sometimes called “c-type” transitions.

Figure 16 shows the energy level diagram for formaldehyde. Because HoCO is a nearly prolate
asymmetric top, transition between different K_; ladders are highly forbidden. The transitions
between the split J levels for K_; = 1 occur at cm wavelengths (4.8 GHz, etc.). Transitions between
different J levels are much higher in frequency, in the mm and submm part of the spectrum. Notice
that transitions in different K_; ladders for same J+1 — J occur at similar frequencies (e.g. J=3—2
are near 220 GHz).

Rotational Energy Levels of H,CO

312
313

. 28.975GHz

30 — —
(312 > 219)
225.698 GHz

(313 - 212)
Kk 211.211 GHz

214 14.488 GHz
12

T (211 = 140)
0= 150.498 GHz |
(212 » 144)

140.840 GHz
L 218.222 GHz ]‘: T 4830GHz

E/k (K)

145.603 GHz K-y = 1 (Ortho)

101
72.838 GHz

0 Op —

K_y = 0 (Para)

Fig. 16.— The rotational energy level diagram for HoCO. The vertical axis is energy above ground in K. All energy
levels are displayed accurately except the splitting between the 119 111 and 211 212 levels. Only the first two K_;
ladders up to J=3 are shown.
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Water is a good example of a molecule that is intermediate between the prolate and oblate
case. The dipole moment is aligned along the intermediate principle axis (up # 0). Therefore,
transition are allowed between K_; and K1 ladders. The energy level diagram is shown in Figure
17. The 119 — 1p1 transition at 556.9 GHz was recently observed with SWAS, the Submillimeter
Wave Astronomy Satellite.

Rotational Energy Levels of H,0

200 |- 2 _ —
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L 1661.008GHz ]
2773.977 GHz
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1 . -+ 1669.905 GHz
o = .
3 556.936 GHz .
1oy ———=
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J=1 J=2
200 [~ 259 ———— =
PARA A 11228789 GHz
2068749 GHz 21
g 752.032 GHz
£ 100 |- 29 = —
'987.927 GHz
- 1“ .:_ -1
1113.343 GHz
0 0w —
J=0 J=1 J=2

Fig. 17.— The rotational energy level diagram for H»O. The vertical axis is energy above ground in K. All energy
levels are displayed accurately. Since transitions between K41 ladders are allowed, energy levels are organized by J.
All energy levels up to J = 2 are shown.
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Some more complicated asymmetric top molecules have dipole moments that are not aligned
with the prinicple axes of the molecule. HNCO is a good example of a planar molecule with both
pa and pp # 0. Therefore, selection rules indicate that AK_; = 0,+1 and AK; = %1 (see Figure
18). Therefore, both “a-type” and “b-type” transitions are allowed.

Rotational Energy Levels of HNCO

i — o ]
o 11
40 |
30 |
i 923.620 GHz ; |
é }.
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B JK—|K¢| |
21.981 GHz
"""""""""""" — 1y
0 Ow |
J=0 ot

Fig. 18.— The rotational energy level diagram for HNCO. The vertical axis is energy above ground in K. All energy
levels are displayed accurately except the 119 and 111 levels. Since transitions between K ladders are allowed, energy
levels are organized by J. All transition with frequencies greater than 1 GHz are shown. Hyperfine structure not
shown.
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4.2. Nuclear Spin Statistics - 2 Identical Nuclei

Many asymmetric molecules have 2 identical nuclei. The most common astrophysical cases are
molecules that have Cy, symmetry, where the molecule is unchanged with a rotation of = about
the symmetry axis and a reflection of 7 through the symmetry plane. Common examples of Cy,
symmetric molecules are HoCO, H2O, and SO3. Nuclear spin statistics determine the statistical
weights of energy levels and can cause levels to not exist (e.g. SOq).

4.2.1.  Ortho & Para - 2 H nuclei

The most common astrophysical case is a molecule with 2 H atoms and the other nuclei
with spin 0. Since H has a spin of 3, the overall wavefunction (given by equation (36)) has to
obey Fermi-Dirac Statistics and be antisymmetric with respect to interchange of the identical
nuclei (corresponding to a rotation of m about the symmetry axis for Cy, molecules). The total
wavefunction can be written as the product of the electronic (Ug), vibrational (Uy ), rotational
(Tux_, K+1) and nuclear wavefunctions (¥y),

Yiotat = VEVCV Wi«  UN. (43)

1K41
For 2 spin % particles, there are four ways to arrange their spins, 3 symmetric combinations ( | 11),

| L), %| 1) + %| 1)) and 1 antisymmetric combination (%| N — %| I1)). The symmetric
case (ortho) has a statistical weight that is 3 times that of the antisymmetric case (para).

For a molecule in the 'Y elecrtonic state and the ground vibrational state, the electronic
and vibrational wavefunctions are symmetric. The nuclear wavefunction can be either symmetric
(ortho) or antisymmetric (para). The total wavefunction must be antisymmetric. Therefore, to
determine which rotational levels are ortho or para, we need to know the symmetry of the rotational
wavefunction with respect to a rotation of 7 about the symmetry axis of the molecule (see Table
7). We can now see another powerful use of the Jx_, k., notation. The rotational symmetry can
be determined by using Table 7, knowing along which principle axis the dipole moment is aligned
(Table 5), and noting which K, are even and odd.

In the previous section we considered HoCO. Formaldehyde has its dipole moment aligned with
the principle axis of least moment of Inertia (4 # 0). Therefore, Table 7 tells us that K_1K; that
are ee and eo have symmetric rotational wavefunctions. Since W;,, must be antisymmetric, then
the nuclear wavefunction must be antisymmetric (para). So, all K_;K; that are ee and eo are
para-HoCO. The K1 = 0,2,4, ... ladders satisfy this criteria and are therefore para-HoCO. Table
7 also shows that K_1K,; = oo and oe have antisymmetric rotational wavefunctions. Now, the
nuclear wavefunction must be symmetric (ortho) to make ¥, antisymmetric. The K1 =1,3,5, ...
ladders are ortho-HoCO and have statistical weights that are 3 times higher than para-H»CO levels.

H>0 is an example of a molecule with its dipole moment aligned with the principle axis of
intermediate moment of inertia (up # 0). Therefore, the symmetric rotational wavefunctions have
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K 1K;; = ee and oo. The nuclear wavefunction must be antisymmetric (para) to make Wy
antisymmetric. Therefore, the energy levels, Ogo, 111, 220, etc. are para-HoO. The antisymmetric
rotational wavefunctions have K_;K ;1 = eo and oe. The nuclear wavefunction must be symmetric
(ortho) to make Wy, antisymmetric. Therefore, the energy levels, 1o1, 119, 212, 291, etc. are
ortho-HoO. Transitions between ortho-HoO and para-H2O levels are unlikely because the spin of H
atoms would have to change.

4.2.2.  Bose-FEinstein Example - SOq

Molecules containing two identical nuclei with even spin (e.g. N, O, etc.) have a total wave-
function that satisfy Bose-Einstein Statistics. Wy must now be symmetric. In the case of SOq
this eliminates certain energy levels! Sulfer Dioxide has its dipole moments along the intermediate
principle axis (up # 0). Therefore, antisymmetric rotational wavefunctions have K_1K;; = eo and
oe. The spin of 160 is 0. Therefore, the nuclear spin wavefunction can only be symmetric! Since
W,otqr Must be symmetric, it is impossible to have antisymmetric rotational wavefunctions in the
1% ground vibrational state of SOz. Only symmetric rotational wavefunctions exist with K_1K 1
= ee and 00 (see Figure 14). For Bose-Einstein nuclei with spin > 0, the nuclear wavefunction can
be either symmetric and antisymmetric and all the rotational levels are permitted.

4.3. Hyperfine Structure - Asymmetric Top '3 State

The hyperfine structure for asymmetric top molecules is analogous to symmertric top and
linear molecules. Each Jx_;k,, level is split. Calculation of the actual energy levels are much
more complicated since the asymmetry of the molecule does not allow a single constant to describe
the electric quadrupole and magnetic dipole coupling (you must use coupling tensors).

5. Linear Molecules with Electronic Angular Momentum
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Rotational Energy Levels of SO,
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Fig. 19.— The rotational energy level diagram for SO». The vertical axis is energy above ground in K. All energy
levels are displayed accurately. Since transitions between K4, ladders are allowed, energy levels are organized by J.
All energy levels up to J = 2 are shown. Notice that the 292 level is lower in energy than 111.
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Table 1. Parameters of Example Linear Molecules in 'S States

Molecule Name B 7 Molecule Name B 7

(CHy) (D) (CHz)  (D)?
CcO Carbon Monoxide 57.635968 0.11011 CS Carbon Monosulfide 24.495562 1.957
13Co 55.101011  0.11046 C38 24.103541 1.957
Cc'"0 56.179990 0.11034 1308 23.123856  1.957
C'80 54.891420 0.11079 HCN Hydrogen Cyanide 44.315975 2.984
HCO'  Oxomethylium 44.5944 3.30 H!3CN 43.170137  2.984
H3CO* 43.37722 3.3 HCN 43.02769  2.984
HCBOT 42.58121  3.30 DCN 36.20746  2.984
DCO* 36.01976 3.3 HNC Hydrogen Isocyanide 45.33199  3.05
HOC* Hydroxymethylidynium  44.7349 4.0 HN!3C 43.54561  2.699
NoHT Diazenylium 46.586867  3.40 H’NC 43.02769  2.984
NoD* 38.554719 3.40 DNC 38.152998  3.050
SiO Silicon Monoxide 21.711967  3.098 HC3N Cyanoacetylene 4.549058  3.724
HCS* Thioxomethylium 10.691406 1.86 HCs;N Cyanodiacetylene 1.33133 4.37
HF Hydrogen Flouride 616.365 1.826 HC7N Cyanohexatriyne 0.5640007 5.0
C30 Tricarbon Monoxide 4.8108809  2.391 HCyN Cyanooctatetrayne 0.2905183 5.6
0CS Carbonyl Sulfide 6.0814921  0.715 HC{1N Cyanodecapentayne  0.1690629 6.2

3D = Debye. 1D = 10~ "8esu (cgs

References. — All data from JPL

units).

line catalog
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Table 2. Properties of Astrophysically Important Nuclei and Hyperfine Coupling Constants of
Astrophysically Important Molecules

Isotope Spin Magnetic Quadrupole Molecule eQq Cy Ref
I Moment?  Moment (MHz)  (kHz)
'H 5 +2.79278
2D 1 +0.85743  40.0028 DCN +0.1944 —0.6 1
2¢ 0
130 5 +0.7024
14N 1 +0.4036 +0.01
NH; —4.0842 1
HCN —4.7091 +104 1
HC3N —4.28 1
CH3CN  —4.2244 1
N 3 —0.2831
160 0
70 > -1.8937 —0.026
cl"0 +4.337 —304 2
HCYOt  +4.595 —-20 3
180 0
28gj 0
329 0
333 3 406434 —0.055
C338S +12.83 1
34g (0)

aMagnetic Moment in nuclear magnetons. 1up = 9.274 x 10~2! erg-gauss—'.

PQuadrupole Moment in barns. 1 barn = 10724 cm?.

References. — 1. Gordy & Cook 1984; 2. Frerking & Langer 1981; 3. Dore
et al. 2001;



—34 —

Table 3. Frequencies for Hyperfine Components of HCN and C'7O

Molecule J; Jy F; Fy Avg? Avpr2 Av v Relative
(kHz)  (kHz) (kms™!) (GHz)  Intensity

HCN 1 0 88.631602
2 1 42354 4104 -0.83 88.631848  0.555
1 11773 <104 44.02 88.630414  0.333
0 1 +23545 -208 -7.90 88.633936  0.111
2 1 177.261111
3 2 41009 4104 -0.19 177.261222  0.467
2 2 14127 208 4243 177.259677  0.083
2 1 0 0 0 177.261111  0.250
1 2 +941.82 -41.6 -1.52 177.262011  0.005
1 1 +23545 -208 -3.95 177.263445  0.083
10 -1177.3  -104  +201 177.259923  0.111
c’0 1 0 112.359275
7/2 5/2 2168  -76.0 4+0.78  112.358982  0.444
5/2 5/2 +693.9 4304 -1.93 112.359999  0.333
3/2 5/2 -607.2 41064 +1.34  112.358774  0.222
2 1 224.714368
9/2 7/2 -929  -76.0 +0.22  224.714199  0.333
7/2 7/2 47435 4608 -1.07 224.715172  0.095
7/2 5/2 -167.3  -45.6  4+0.28  224.714155  0.171
5/2 7/2 +526.6 +167.2 -0.93 224715062  0.016
5/2 5/2 -384.1  4+60.8 4043 224714045  0.122
5/2 3/2 +917.0 -15.2  -1.20 224.715270  0.062
3/2 5/2 -1003.7 +136.8 +1.16 224713501  0.040
3/2 3/2 +2974 4608 -0.48 224.714726  0.093

1/2 3/2 -260.2 106.4  +0.20 224.714214 0.067

2Quadrupole £9) and magnetic (Z2) hyperfine frequency shifts with respect to the
h h

Lovas unshifted frequency
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Table 4. Parameters of Example Symmetric Top Molecules

Molecule Name A B C BA UB  BC
(GHz)  (GHz)  (GHz) (D) (D) (D)
NH3 Ammonia B 298.11706 186.72636 0 0 1476
CH3CCH Methyl Acetelyene  158.590 8.54586 B 0.75 0 0
CH3;CN Methyl Cyanide 158.0990 9.1989 B 3.92197 0 0
H;0* Hydronium Ion 337.38849 B 181.3740 0 0 1.44
Table 5. Parameters of Example Asymmetric Top Molecules
Molecule Name A B C BA UB we
(GHz) (GHz) (GHz) (D) (D) (D)
H,CO Formaldehyde 281.97058  38.833987  34.004244 —-0.96 2.331 0 0
H,CS Thioformaldehyde 291.291641 17.699628  16.651830 —0.99 1.649 0 0
CH3;0H Methanol 127.484 24.67998 23.76970  —0.98 0.885 1.440 0
HNCO Isocyanic Acid 912.711435 11.0710098 10.9105763 ~ —1 1.6020 1.3500 0
H>O Water 835.8403 435.3517 278.1387  —0.44 0 1.84718 0
HDO 701.9315 272.9126 192.0552  —0.68 0.657 1.732 0
SO, Sulfer Dioxide 60.778550  10.318074 8.799703  —0.94 0 1.6331 0
t-HCOOH  trans-Formic Acid 77.51225 12.05511 1041612  —-0.95 1.396 0.260 0
CH30CHj3 Dimethyl Ether 38.7882 10.0565 8.8868 —0.92 0 1.302 0
NH,;D Dueterated Ammonia 290.125 192.194 140.795 -0.31 -0.18 0 463
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Table 6. Selection Rules for Asymmetric Top Molecules

Electric Dipole Inertia Component Allowed Transitions AK_4 AK .y
(K_1K 1) ¢ (K1 K1)y

pa #0 least ee < eo?

oe <— 00 0,£2,... =£1,£3,...
up #0 intermediate ee <— 00

oe <— eo +1,4+3,... =£1,£3,...
pe #0 greatest ee < o€

€0 <— 00 +1,+3,... 0,£2,...

3¢ = even and o = odd

Table 7. Behavior of Rotational Wavefunction with =
rotation about the Principle Axes

K_1K4? Jk 1K, Symmetry®
A B C
ee + + +
€o + - -
00 — + —
oe — — +

3¢ = even and o = odd

b1 — symmetric and — = antisymmetric for rotational of
7 about the principle axes A, B, or C.
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Table 8. Summary of Quantum Numbers
Electronic Molecule Special Hyperfine? Quantum Numbers Astrophysical
State Cases Example
Iy Linear J CO
S JF cl"0
M JF (... Fp) F NoH*
Symmetric Top JK
S Jk F
Inversion Jx¥ or inv(J,K)
S JkT F NH;
C3, Symmetry JkA and JKE CH3CCH
S JKA F and JKE F CchN
Torsion Jx AT and JKE CH30H
Asymmetric Top JK_ 1Ky H,CO
S Jk_ 1k F HNCO
Inversion S JE K 1Ky B NH>D
2y Linear Ny Ccot
S N; F CN
Asymmetric Top S Nkx F CH,*
3% Linear Ny SO
S N; F
10 Linear® Joy*
J (Q):t F OH

a5 = single coupling nucleus. M = multiple coupling nuclei.

() = optional.

“Since electronic transitions are not common in molecular clouds, the ) subscript is usually

dropped. Furthermore, each II state is split into different () states. For the case of above, there are

engery levels for 2135 and 2II; 5.



