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ABSTRACT
We present a new method, the coupled escape probability (CEP), for exact calculation of line
emission from multi-level systems, solving only algebraic equations for the level populations.
The CEP formulation of the classical two-level problem is a set of linear equations, and we
uncover an exact analytic expression for the emission from two-level optically thick sources
that holds as long as they are in the ‘effectively thin’ regime. In a comparative study of a
number of standard problems, the CEP method outperformed the leading line transfer methods
by substantial margins.

The algebraic equations employed by our new method are already incorporated in numerous
codes based on the escape probability approximation. All that is required for an exact solution
with these existing codes is to augment the expression for the escape probability with simple
zone-coupling terms. As an application, we find that standard escape probability calculations
generally produce the correct cooling emission by the C II 158-µm line but not by the 3P lines
of O I.
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1 I N T RO D U C T I O N

Much of the information about astronomical sources comes from
spectral lines, requiring reliable analysis of multi-level line emis-
sion. Most current methods for exact solutions involve accelerated
�-iteration (ALI) techniques1 in which the radiation intensity is
obtained from the repeated action of an operator designated � on
the source function (e.g. Rybicki 1991; Hubeny 1992). The ALI
method utilizing short characteristics with parabolic interpolation
of the source function (hereafter SCP: Olson, Auer & Buchler 1986)
is a standard against which the efficiency of other line transfer tech-
niques can be measured.

Because of the complexity and computational demands of exact
methods, many simulation codes that attempt to implement as many
realistic physical ingredients as possible are altogether bypassing
solution of the radiative transfer equation, employing instead the
escape probability technique. In this approach only the level popu-
lations are considered, calculated from rate equations that include
photon escape factors which are meant to account approximately
for the effects of radiative transfer [see Dumont et al. 2003 for a re-
cent discussion and comparison with ALI calculations]. Since this
approach is founded on a plausibility assumption right from the
start, its results amount to an uncontrolled approximation without

�E-mail: moshe@pa.uky.edu (ME); aasensio@arcetri.astro.it (AAR)
1 As noted by Trujillo Bueno & Fabiani Bendicho (1995), the ALI method
is based on the Jacobi iteration (Jacobi 1845).

any means for internal error estimates. Nevertheless, this inherent
shortcoming is often tolerated because of the simplicity and useful-
ness of the escape probability approach.

We present here a new exact method, the coupled escape prob-
ability (CEP), that retains all the advantages of the naive escape
probability approach. In this new technique the source is divided
into zones, and formal level population equations that are fully
consistent with radiative transfer are derived rigorously from first
principles. Different zones are coupled through terms resembling
standard escape probability expressions, resulting in a set of level
population equations with non-linear coefficients. Solution of this
set of coupled algebraic equations produces level populations that
are self-consistent with the line radiation they generate. Any desired
level of accuracy can be achieved by increasing the number of zones.

We introduce our new method in Section 2. In Section 3 we study
the two-level model in both a semi-infinite atmosphere and finite
slabs, presenting results and comparison with SCP calculations. The
new CEP method attains the exact solutions, outperforming the SCP
method by substantial margins. We present the equations for multi-
level systems in Section 4, and include as an example an application
to the 3P system of O I. Section 5 contains a discussion that, among
other things, covers various technical details.

2 T H E N E W T E C H N I QU E

Consider the transfer of a line with frequency ν 0. The dimension-
less line profile is �(x), normalized so that

∫
�(x) dx = 1, where

x = (ν − ν 0)/�νD is the dimensionless frequency shift from line
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Figure 1. Top: sketch of the slab geometry for the radiative transfer prob-
lem. Bottom: the partition of the slab into zones (see Section 2.3).

centre and �νD is the Doppler width. We consider here only the
case of �(x) that does not change its shape throughout the source
and frequency-independent line source function S. These assump-
tions are adopted to simplify the presentation. They do not reflect
inherent limitations of our new method.

2.1 Radiative transfer

For the geometry we adopt a plane-parallel slab the physical prop-
erties of which vary only perpendicular to the surface. Optical depth
at frequency ν along a path orthogonal to the surface is τ ν = τ�(x),
and τ can be used as a coordinate that uniquely specifies locations
in the slab (see Fig. 1). The optical depth along a ray slanted at θ =
cos−1 µ from normal is τ ν(µ) = τ�(x)/µ, and the intensity along
the ray obeys the radiative transfer equation

µ
dIν(τ, µ)

dτ
= �(x)[S(τ ) − Iν(τ, µ)]. (1)

The equation for the flux Fν = 2π
∫

Iνµ dµ is obtained from in-
tegration over angles. The overall line flux F = ∫

Fν dν obeys at
every position in the slab

dF(τ )

dτ
= 4π�νD[S(τ ) − J̄ (τ )], (2)

where

J̄ (τ ) =
∫

d�

4π

∫
Iν(τ, µ)�(x) dx (3)

is the intensity averaged over both angles and line profile. Denoting
by τ t the overall optical thickness and accounting for the emission
from both faces of the slab, the line contribution to the cooling rate
per unit area is

� = F(τt) − F(0) ≡ 4π�νD. (4)

The line cooling factor  is introduced for convenience when �νD

is constant in the slab. Integrating equation (2) over τ yields

 =
∫ τt

0

S(τ )p(τ ) dτ. (5)

Here we introduced

p(τ ) = 1 − J̄ (τ )

S(τ )
, (6)

a quantity that has been called the net radiative bracket (Athay &
Skumanich 1971). From the formal solution of the radiative transfer
equation,

p(τ ) = 1 − 1

2S(τ )

∫ τt

0

S(t) dt

∫ ∞

−∞
�2 dx

∫ 1

0

e−|τ−t |�/µ dµ

µ
(7)

when there is no external radiation entering the slab.

2.2 Level populations

Denote by nk(τ ), with k = 1, 2, the populations per sub-state of a
given transition at position τ ; that is, nk = Nk/gk where gk is the
level degeneracy and Nk is the overall level population. Then the
line source function is

S = A21

B21

n2

n1 − n2
, (8)

where A and B are the Einstein coefficients of the transition. The
populations are obtained from steady-state rate equations of the
form

∑
Ri j = 0. The term corresponding to exchanges between

the transition levels, separated by E 21 = hν 0, is

R21 = −A21n2 − B21 J̄ (n2 − n1) − C21

(
n2 − n1e−E21/kT

)
, (9)

where C is the collision rate; exchanges with other levels have sim-
ilar form and are listed in Section 4.

2.3 Solution

The common approach of exact solution methods is to handle ra-
diative transfer and the level population distribution as two distinct
problems, coupled through the results each of them gives. The prob-
lem is initialized with populations (and the corresponding source
functions) obtained in some limiting case, e.g. thermal equilibrium.
With these populations, radiative transfer (equation 1) is solved for
the intensity to determine J̄ (equation 3), which is then plugged into
the rate terms (equation 9) to determine new populations, and so on.
However, from equations (6) and (8), the rate term can be written
as

R21 = −A21n2 p − C21

(
n2 − n1e−E21/kT

)
, (10)

showing that the only radiative quantity actually needed for the cal-
culation of level populations at every position is the net radiative
bracket p(τ ); given this factor we could compute the level popu-
lations that are consistent with the radiation they produce without
solving for the intensity. And as is evident from equations (7) and
(8), the factor p(τ ) itself can be computed from the level popula-
tions, again without solving for the intensity. Therefore inserting
p(τ ) from equation (7) into the rate terms (equation 10) produces
level population equations that properly account for all the effects
of radiative transfer without actually calculating the intensity it-
self ; the radiative transfer equation has been incorporated through
its formal solution in equation (7).

A numerical solution of the resulting level population equations
requires a spatial grid, partitioning the source into zones such that
all properties can be considered uniform within each zone. The
degree of actual deviations from uniformity, and the accuracy of the
solution, can be controlled by decreasing each zone size through
finer divisions with an increasing number of zones. Fig. 1 shows the
slab partitioning into z zones. The ith zone, i = 1 . . . z, occupies the
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Exact line transfer 781

range τ i−1 < τ � τ i , with τ 0 = 0 and τ z = τ t. The optical depth
between any pair of zone boundaries is

τ i, j = |τi − τ j | (11)

so that the optical thickness of the ith zone is τ i,i−1. The temperature
and collision rates are constant in the zone, and the corresponding
rate term for its (constant) level populations is

Ri
21 = −A21ni

2 pi − Ci
21

(
ni

2 − ni
1e−E21/kTi

)
, (12)

where the superscript i is used as a zone label. The factor p(τ )
varies in the zone and has been replaced by a constant pi that should
adequately represent its value there, for example pi = 1

2 [p(τi ) +
p(τi−1)] or pi = p[ 1

2 (τi + τi−1)]. There are no set rules for this
replacement other than it must obey pi →p(τ i ) when τ i,i−1 → 0.
We choose for pi the zone average

pi = 1

τ i,i−1

∫ τi

τi−1

p(τ ) dτ, (13)

and this choice has proved to be very successful in our numerical
calculations. From equation (7), calculation of pi requires an in-
tegration over the entire slab, which can be broken into a sum of
integrals over the zones. In each term of the sum, the zone source
function can be pulled out of the τ -integration so that

pi = 1 − 1

2τ i,i−1 Si

z∑
j=1

S j

×
∫ τi

τi−1

dτ

∫ τ j

τ j−1

dt

∫ ∞

−∞
�2 dx

∫ 1

0

e−|τ−t |�/µ dµ

µ
. (14)

The remaining integrals can be expressed in terms of common func-
tions. Consider for example

β i = 1 − 1

2τ i,i−1

×
∫ τi

τi−1

dτ

∫ τi

τi−1

dt

∫ ∞

−∞
�2 dx

∫ 1

0

e−|τ−t |�/µ dµ

µ
, (15)

the contribution of zone i itself to pi. It is straightforward to show
that β i = β(τ i,i−1), where

β(τ ) = 1

τ

∫ τ

0

dt

∫ ∞

−∞
�(x) dx

∫ 1

0

dµ e−t�(x)/µ. (16)

This function was first introduced by Capriotti (1965); it is the prob-
ability for photon escape from a slab of thickness τ , averaged over
the photon direction, frequency and position in the slab. The contri-
bution of zone j �=i to the remaining sum can be handled similarly,
and the final expression for the coefficient pi is

pi = β i + 1

τ i,i−1

z∑
j=1
j �=i

S j

Si
Mi j , (17)

where

Mi j = −1

2
(αi, j − αi−1, j − αi, j−1 + αi−1, j−1) (18)

and where αi, j = τ i, jβ(τ i, j ). The quantity αi, j obeys αi, j = α j,i and
αi,i = 0, therefore Mij = Mji and Mii = αi,i−1.2 The first term in
the expression for pi is the average probability for photon escape

2 Since β i = Mii/τ i,i−1, the first term could be incorporated into the sum in
equation (17) as the j = i term.

from zone i, reproducing one of the common variants of the escape
probability method in which the whole slab is treated as a single
zone (e.g. Krolik & McKee 1978). The subsequent sum describes
the effect on the level populations in zone i of radiation produced in
all other zones. Each term in the sum has a simple interpretation in
terms of the probability that photons generated elsewhere in the slab
traverse every other zone and get absorbed in zone i, where their
effect on the level populations is similar to that of radiation external
to the slab (see Appendix A).

Inserting the coefficients pi from equation (17) into the rate terms
(equation 12) in every zone produces a set of non-linear algebraic
equations for the unknown level populations ni

k. The procedure
was outlined here only for the diffuse radiation of a single tran-
sition; we describe the extension to multi-levels in Section 4 and
the inclusion of external radiation in Appendix A. Solution of these
equations yields the full solution of the line transfer problem by con-
sidering only level populations;3 the computed populations are self-
consistent with their internally generated radiation even though the
radiative transfer equation is not handled at all. Once the populations
are found, radiative quantities can be calculated in a straightforward
manner from summations over the zones. The emerging intensity at
direction µ is

Iν(τt, µ) =
z∑

i=1

(
e−τ z,i �/µ − e−τ z,i−1�/µ

)
Si . (19)

The flux density emerging from each face of the slab obeys

Fν(τt) = 2π

z∑
i=1

[
E3(τ z,i�) − E3(τ z,i−1�)

]
Si ,

−Fν(0) = 2π

z∑
i=1

[
E3(τ i−1,0�) − E3(τ i,0�)

]
Si , (20)

where E3 is the third exponential integral (e.g. Abramowitz & Stegun
1972). The line cooling coefficient is

 = 1

2

z∑
i=1

(αi,0 − αi−1,0 − αz,i + αz,i−1)Si . (21)

The solution method just described is exact – the discretized equa-
tions are mathematically identical to the original ones when τ i,i−1 →
0 for every i. As is usually the case, the only approximation in ac-
tual numerical calculations is the finite size of the discretization, i.e.
the finite number of zones. A desired accuracy is achieved when,
upon further division, the relative change in all level populations is
smaller than the prescribed tolerance.

2.4 Numerical implementation

The level populations of all zones are described by a set of non-linear
algebraic equations. The equations are readily solved by the Newton
method, which utilizes the Jacobian of the set. Since the dependence
on the unknown variables is explicit in all the rate terms, the Jaco-
bian can be computed from analytic expressions. The functions β

(see equation 16), α = τβ and their derivatives are conveniently

3 Apruzese et al. (1980) proposed somewhat similar equations. They based
their arguments on probabilistic reasoning and did not offer a formal deriva-
tion. We thank P. Lockett for bringing this to our attention.
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Figure 2. Plots of the functions β (see equation 16) and α = τβ (equa-
tion 22).

calculated from the representations

α(τ ) =
∫ ∞

−∞
dx

{
1

2
− E3[τ�(x)]

}
,

α′(τ ) =
∫ ∞

−∞
�(x)E2[τ�(x)] dx, (22)

where E2 is the second exponential integral. Fig. 2 plots β and α.
While β is a monotonically decreasing function, α is monotonically
increasing and its asymptotic behaviour when τ → ∞ is α ∼ √

ln τ .
This divergent behaviour does not pose any problems because α

cancels to first order in the thickness of the zones in the linear
combinations defining Mij (equation 18). Only the second-order
terms, involving the second derivative α′′, survive.

Since our aim is to explore the intrinsic accuracy of our new
method, the integrals in equation (22) were computed repeatedly
with an 80-point Gaussian quadrature to ensure that these integra-
tions do not compromise the precision of the outcome. The En func-
tions were evaluated with a rapidly convergent series from Press et al.
(1986). The integration range was truncated at x = ± 7, which we
have verified is sufficient in all cases thanks to the rapid decrease
with x of the integrands.

In order to test the new method, the radiative transfer problem
was also solved using the ALI method for comparison. The tech-
nique is based on a modified � iteration in which the statistical
equilibrium equations are linearized via the Rybicki & Hummer
(1992) pre-conditioning scheme. The method also takes advantage
of an operator splitting scheme by introducing an approximate oper-
ator �∗, the diagonal of the exact operator � in the formal solution
J̄ = �[S] of the radiative transfer equation. It has been shown
that the introduction of this operator leads to an optimal balance
between the convergence rate and computing time per iteration (Ol-
son et al. 1986; Carlsson 1991). The ALI calculations presented in
this paper utilize a formal solver based on the short-characteristics
scheme with parabolic precision (Olson et al. 1986), currently con-
sidered the method of choice for complicated line transfer problems
(e.g. Kunasz & Auer 1988; Auer, Fabiani Bendich & Trujillo Bueno
1994; van Noort, Hubeny & Lanz 2002; Fabiani Bendicho 2003).
With this SCP method, equation (1) was solved for many frequencies
and ray inclinations, and the mean intensity computed from angu-
lar and frequency integrations (equation 3) by numerical quadra-
tures.4 To ensure the high precision required in this comparative

4 It is interesting to note that the calculation of the mean intensity has also
been done using Monte Carlo techniques (see e.g. van Zadelhoff et al. 2002
and references therein).

study, the angular integration was done with a Gaussian quadrature
with 24 points in the variable µ. The frequency integrals were done
with trapezoidal integration extending to x = ±4 with 33 frequency
points, which we have verified yields the desired precision.

We proceed now to present solutions and comparisons of the
newly developed CEP method with the SCP method for a num-
ber of standard problems. In all the examples we employ uni-
form physical conditions and the Doppler shape for the line pro-
file, � = π−1/2e−x2

; note that the line centre optical depth is then
τ0 = τ/

√
π.

3 T WO - L E V E L ATO M

In the two-level problem, the steady-state rate equation R21 = 0
(equation 9) yields the familiar expression for the source function

S = (1 − ε) J̄ + εB(T ), (23)

where B is the Planck function and where

ε

1 − ε
= C21

A21
(1 − e−E21/kT ) ≡ N

N ′
cr

. (24)

Here N is the density of the collision partners and N ′
cr the stan-

dard critical density with a slight modification that incorporates the
Boltzmann factor correction. Replacing J̄ with p (equation 6), the
equation for the source function becomes

(1 + ηp)S = B, where η = N ′
cr

N
; (25)

this result also follows directly from equation (10) with R21 = 0.
When the two-level problem is formulated with optical depth as
the independent variable, it is fully characterized by the two input
quantities B(T) and ε (or, equivalently, η) specified as functions of τ .
There is no need to specify intrinsic properties of the transition such
as, for example, E21 or A21. Instead of solving for the population
of each of the two levels, this single equation for the unknown S
provides the complete solution of the problem.

Dividing the slab into zones, the rate equation Ri
21 = 0 (equa-

tion 12) produces a similar expression for the ith zone,

Si + ηi pi Si = B(T i ), (26)

with ηi and T i corresponding to the physical conditions in the zone.
Inserting the expression for pi from equation (17), the CEP set of
equations for the unknown Si is

(1 + ηiβ i )Si + ηi

τ i,i−1

z∑
j=1
j �=i

Mi j S j = B(T i ). (27)

Since the factors β i and Mij depend only on optical depth, they are
independent of the unknown variables (the zone source functions
Si) in this case. Therefore the CEP technique transforms the two-
level problem to a set of linear equations. This is a reflection of the
linear relation between I ν and S in equation (1) which is maintained
when the complete problem is handled in terms of optical depth as
the independent variable. The CEP formulation produces directly
the explicit linear equations in this case.

We proceed now with solutions for semi-infinite atmospheres and
finite-thickness slabs with constant physical conditions. When the
temperature is constant, B(T) merely sets the intensity scale and
only the dependence on ε need be studied.
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Exact line transfer 783

3.1 Semi-infinite atmosphere

We start with the classical problem of a stellar atmosphere, where
τ measures distance from the surface and τ t → ∞. The source
function is subject in this case to the exact limits

S → B ×
{√

ε when τ → 0

1 when τ 
 1/ε

(28)

(e.g. Avrett & Hummer 1965). In order to capture both limit be-
haviours we model the atmosphere as a slab divided logarithmically
into z zones that cover 10 orders of magnitude in optical depth from
τ = 10−3 to τ t = 107, with the latter serving as a proxy for the
atmospheric interior. The two faces of the slab are a priori identical.
When the radiative transfer equation is part of the calculation, this
two-sided symmetry is broken by the boundary condition I ν(τ =
τ t, µ) = 0, which introduces a radiation sink at the τ t-boundary.
This is the case in ALI methods, including SCP. The CEP method,
on the other hand, does not involve the radiation at all and thus
cannot invoke boundary conditions to differentiate between the two
slab faces. Instead, this is accomplished by the logarithmic division
that starts at one end, and the great disparity that this introduces
between photon escape from the two sides. The semi-infinite at-
mosphere could also be mimicked by doubling the slab with its
mirror image and considering the source function only between one
surface and the mid-plane. We have verified that the results of cal-
culations with the two approaches are practically identical. In order
to compare the CEP method with SCP under identical conditions,
we present the results for logarithmic divisions increasing toward
the slab surface at τ t.

Fig. 3 shows the results for some representative models, ranging
from ε = 10−5 (N = 10−5 N ′

cr) to ε = 0.5 (N = N ′
cr). For example,

the Ca II H line can be modelled in a 5000-K atmosphere with ε =
3.65 × 10−5 (e.g. Avrett & Loeser 1987, and references therein).
The top panel of each plot shows the solution obtained with the
SCP method with 3000 zones, displaying the proper limit behaviour
at both ends of the optical depth axis. The CEP method attains
these solutions with a sufficient number of zones, validating our
new technique. However, the convergence with z is quite different
for the two methods.

At the surface, the SCP method is close to the exact solution al-
ready at z = 20 (only two zones per logarithmic decade) in all cases;
the deviation is less than 40 per cent at ε =10−5 and decreases further
as ε increases. Increasing z brings rapid convergence. In contrast,
deep inside, the rate of convergence is much more moderate. Fur-
thermore, when ε increases, both the magnitude of deviations and
the rate of convergence around τ ∼ 10 remain almost the same for all
ε � 0.1. The behaviour at both ends reflects the short-characteristics
nature of the method, in which only nearby regions are coupled, and
the fact that the radiative transfer equation is always solved. Radia-
tive transfer effects are minimal at small τ , which is why the method
attains easily the exact solution near the surface. However, the effects
are significant at the optical depths where the transition to thermal-
ization occurs, the radiative transfer equation must be repeatedly
solved and the convergence in these regions is hardly improved by
the increase in collision rates as long as N remains subcritical.

In an almost mirror behaviour, at the surface the CEP method
deviates from the exact solution by more than factor of 2 at z < 100
when ε is small, and its convergence rate to the exact solution is
slow there. However, deep inside the atmosphere, the deviations are
actually smaller than at the surface. Moreover, when ε increases,
the deviations decrease everywhere. At ε = 0.1, the CEP method

Figure 3. The two-level model with various values of ε (equation 24) in
a semi-infinite atmosphere. The top panel of each plot shows the variation
of the source function with depth into the atmosphere. The two other panels
show the convergence to the exact solution as the number of zones z is
increased for the CEP and SCP methods. Note the change in scale of the
vertical axis between different panels.
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784 M. Elitzur and A. Asensio Ramos

Table 1. Runtime (in seconds, on the same computer) required by the SCP
and CEP methods to solve an atmosphere with ε = 10−3 for the number
of zones listed in the first column; in the SCP method this corresponds to
the number of grid points. Omitted entries were too short for meaningful
timing. The listed error is the percentage deviation from the result of an SCP
calculation with 3000 zones.

Zones Time Percentage error
SCP CEP SCP CEP

20 0.39 – 36.3 103.6
40 1.10 – 23.9 45.7

100 4.39 0.006 10.9 14.0
200 11.6 0.089 5.5 5.4
600 44.9 1.70 1.6 1.2

is within 7 per cent of the exact solution everywhere already at
z = 20; in contrast, this accuracy is attained by the SCP method
only at z = 100. These properties are readily understood from the
CEP formalism. Since the level population equations couple the
entire atmosphere, the surface layers are affected by the behaviour
deep inside. Also, because the radiative transfer equation is avoided
altogether, the method takes full advantage of the thermalization
that approaches the surface when ε increases.

Performance statistics for the two methods are summarized in
Table 1 for the case ε = 10−3; the statistics for other cases show
similar trends. The CEP technique attains the solution much more
quickly than the SCP method in all cases.

3.2 Finite-thickness slabs

One of the main coolants of photodissociation regions (PDRs) is the
158-µm line of C II, the emission of which is often modelled with
a simple escape probability approximation of the two-level system
(e.g. Tielens & Hollenbach 1985). When this approach employs the
Capriotti expression for the escape probability (equation 16), it is
identical to a CEP calculation with only one zone. For comparison
with exact solutions, we include such single-zone CEP calculations
in the results presented here. The numerical calculations employ z
zones of equal thickness.

Fig. 4 shows the variation of the source function inside slabs of
various optical thickness for ε = 10−5. The displayed behaviour
is representative of all N � N ′

cr cases. The results of single-zone
CEP calculations provide reasonable approximations at small τ t,
but become poorer as the variation range of the source function
gets wider with increasing τ t. However, with only 20 zones the
CEP results are within 1 per cent of the exact solution everywhere
when τ t � 10, 4 per cent when τ t � 50 and 10 per cent when
τ t � 100. An accuracy better than 10 per cent is always achieved
when the optical thickness of each zone is �5. In contrast, the SCP
method does not reach this level of accuracy near the surface of a
τ t = 500 slab even with 200 zones; as a grid- rather than zone-based
method, it attempts to resolve the surface structure even when that is
not required. Furthermore, SCP calculations require a large number
of divisions even at moderate optical thickness; when τ t = 10, a
10 per cent accuracy requires 100 zones. The reason, as noted above,
is that the equation of radiative transfer must be solved repeatedly;
the approach to thermal equilibrium of level populations deep inside
the slab does not alleviate this need, and large optical depths dictate
a large number of zones.

Since the CEP technique employs only level populations, it takes
full advantage of level thermalization. The difference from standard

Figure 4. The two-level model with ε = 10−5 in slabs with overall optical
thickness τ t. The top panel of each plot shows the variation of the source
function from the surface to the slab mid-plane in the exact solution and in
a single-zone CEP calculation. The two other panels show the convergence
to the exact solution with the number of zones z for the CEP and SCP
methods.

methods in the case of ε = 0.5(N = N ′
cr), shown in Fig. 5, is striking.

Already with one zone, CEP calculations produce acceptable results
inside every slab, even with τ t as large as 500; 20 zones suffice for
3 per cent accuracy everywhere. In contrast, to achieve 10 per cent
accuracy, SCP requires 100 zones at a moderate τ t = 50, and even
200 zones are insufficient when τt = 500. The zone thicknesses in
this case is τ = 2.5, enough to challenge numerical solutions of the
radiative transfer equation that SCP must perform.

Table 2 summarizes the performance statistics in one represen-
tative case. The CEP method outperforms SCP by an even larger
margin than in the case of an atmosphere.
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Exact line transfer 785

Figure 5. As Fig. 4, only with ε = 0.5.

3.2.1 Slab emissivity

The advantages offered by the CEP method are even more pro-
nounced for slab emission calculations. Fig. 6 shows a striking re-
sult: when ε = 10−5 (i.e. η = 105), the CEP method produces with
a single zone the correct line cooling coefficient for all slabs with
τ t � 500! This result is easy to understand. From the behaviour of
the function β at small and large τ (Capriotti 1965), it follows that
p(τ ) ∼ 1 when τ < 1 and that p(τ ) ∼ 1/τ when τ 
 1, so that p(τ ) �
1/τ t. Therefore slabs with η > τ t have ηp > 1 everywhere. From
equations (25) and (5) it follows that in this case

τt � η : S(τ ) = B

ηp
,  (τt) =

∫ τt

0

1

η
Bdτ. (29)

The expression for  involves only input properties. That is, the line
cooling coefficient can be calculated in this regime without even
solving the problem. This result does not seem to have been recog-

Table 2. Performance comparison of the SCP and CEP methods, similar
to Table 1, for a slab with ε = 10−3 and τ t = 500. The listed errors include
the percentage deviations of both the source function and the line cooling
coefficient from the exact results.

Time Percentage Percentage
error – S error – 

Zones SCP CEP SCP CEP SCP CEP

1 0.03 – 99.5 55.5 98.6 25.0
10 0.60 – 93.3 31.0 28.2 13.2
20 1.02 – 88.2 23.0 17.5 7.94
40 3.29 – 79.8 15.5 10.1 4.01

100 12.6 0.033 62.5 6.47 3.94 1.21
200 28.1 0.085 46.4 2.22 1.60 0.40

nized in the published literature. When the physical conditions are
constant,  = Bτ t/η; the source is optically thick yet its emission
increases linearly with optical depth. The slab remains ‘effectively
thin’ at large optical depths as long as τ t � η (i.e. ετ t � 1). And
because the CEP method employs discretized forms of these ex-
pressions, it reproduces the correct line emission irrespectively of
the division into zones.

Since  (τ t) can be calculated without solving any equations, the
single-zone calculation produces the correct emission even though
it does not reproduce the correct population distribution – as is evi-
dent from both equation (29) and Fig. 4, the source function varies
in the slab while the one-zone result is constant. Still, this constant
value is just the right average to reproduce the slab luminosity cor-
rectly. Another perspective on this result is provided by the spectral
shape of the emergent radiation, shown in Fig. 7. The exact solution
properly displays a self-absorption dip around line centre (see e.g.
Avrett & Hummer 1965). The single-zone calculation is incapable
of producing this feature, but its flat-top shape does enclose the
same area, reproducing the correct line luminosity. The simple one-
zone calculation properly reproduces the overall number of photons
emitted in the line, although not the frequencies where they emerge.

When the problem is formulated in terms of τ , equation (29)
gives the line emission directly from the input properties. When the
problem is formulated instead in terms of densities and distances,
equation (29) implies that5

� = E21

∫
g1C12 (n1 − n2) d�. (30)

Although the condition ηp > 1 ensures that n2 � n1 when E 21 >

kT , n2 need not be negligible when E 21 < kT . Therefore the solution
must be executed in this case to determine the population distribution
and the actual value of τ t. Since the single-zone calculation does not
produce the correct population distribution, its result for the overall
optical depth can be wrong. To ensure the correct assignment of
τ t to the prescribed input, the problem must be solved properly,
including the division into zones.

When ε increases, the slab ceases to be ‘effectively thin’ and
the line luminosity begins to deviate from the one-zone CEP re-
sult, as is evident from Fig. 6. Eventually, linethermalization sets in
with further increase in ε, and the single-zone result again becomes

5 This result was noticed in the limit in which n2 � n1 by D. Neufeld in
benchmark testing of radiative transfer codes, posted at http://www.mpifr-
bonn.mpg.de/staff/fvandertak/H2O/radxfrtest.pdf. Note that the line cool-
ing always obeys � = E21

∫
(C12 N1 − C21 N2) d� = E21

∫
g1C12 (n1 −

n2eE21/kT ) d�, as is evident from equations (5), (8) and (10).
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786 M. Elitzur and A. Asensio Ramos

Figure 6. The line cooling coefficient of a slab as a function of its overall
optical depth in two-level models with various ε. The top panel of each plot
shows the exact solution and the result of a single-zone CEP calculation.
The two other panels show the convergence to the exact solution with the
number of zones z for the CEP and SCP methods.

Figure 7. Spectral shape of the flux emerging from slabs with ε = 10−5 and
optical depths as marked. The thick lines are the result of the exact solution,
the thin lines of a single-zone CEP calculation.

Figure 8. Deviation of the one-zone CEP result from the exact value of the
line cooling coefficient as a function of ε in two-level models with various
slab thicknesses.

adequate. This behaviour is further illustrated in Fig. 8. At a fixed
τ t, the deviation from the single-zone CEP calculation reaches a
maximum when ε ∼ 5/τ t. When τ t = 50 the maximal deviation is
∼20 per cent at ε ∼ 0.1; when τ t = 500 it is ∼70 per cent at ε ∼
0.01. Varying ε away from that peak in either direction, the one-zone
CEP calculation gives a progressively better approximation.

With N ′
cr = 4 × 103 cm−3 at T = 75 K, the 158-µm line of

C II is in the regime N � N ′
cr (ε � 0.5) in most cases of interest.

Therefore single-zone CEP calculations for this line are expected
to produce cooling rates accurate to better than ∼10 per cent under
most circumstances.

4 M U LT I - L E V E L S Y S T E M S

Consider L energy levels. A trivial change from the two-level case
is the addition of some bookkeeping indices. We designate level
numbers with subscripts and zone numbers with superscripts. In
zone i, the population per sub-state of level k is ni

k and the overall
population is

ni =
L∑

k=1

gkni
k, (31)

where gk is the level degeneracy. Unlike the two-level system, lo-
cations in the slab cannot be specified by optical depth anymore
because each transition has a different optical depth, which can be
determined only after the unknown ni

k are calculated. Instead, the
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Exact line transfer 787

partition into zones is done in terms of the geometrical distance from
one surface. Denote by �i the width of the ith zone, then its optical
thickness in the transition between lower level l and upper level u is

τ
i,i−1
ul = 1

4π�νD
gu Bul Eul

(
ni

l − ni
u

)
�i , (32)

where Eul is the energy separation between levels u and l. The equiv-
alent of equation (11) is then

τ
i, j
ul =

i∑
k= j+1

τ
k,k−1
ul (33)

when i > j. In complete analogy with equations (12), (17) and (18),
the level population equations are

dni
k

dt
= −

k−1∑
l=1

Akl pi
kln

i
k + Ci

kl

(
ni

k − ni
l e

−Ekl /kT i )

+
L∑

u=k+1

gu

gk

[
Auk pi

ukni
u + Ci

uk

(
ni

u − ni
ke−Euk/kT i )]

. (34)

Here

pi
ul = β i

ul + 1

τ
i,i−1
ul

z∑
j=1
j �=i

n j
u

ni
u

ni
l − ni

u

n j
l − n j

u

Mi j
ul , (35)

where

Mi j
ul = −1

2

(
α

i, j
ul − α

i−1, j
ul − α

i, j−1
ul + α

i−1, j−1
ul

)
(36)

and where β i
ul = β(τ i,i−1

ul ) and α
i, j
ul = τ

i, j
ul β(τ i, j

ul ). This provides a set
of L − 1 independent equations for the L unknown populations in
each zone, ni

k. Equation (31) for the overall density in the zone closes
the system. The overall system of non-linear algebraic equations for
the level populations in all zones is readily solved with the Newton
method.

It is convenient to switch to the scaled quantities ni
k/ni as the

unknown variables and introduce the overall column density

N =
z∑

i=1

ni�i . (37)

Neither densities nor physical dimensions need then be specified
since only N enters as an independent variable; the zone partition
is done in terms of N rather than �. The problem is fully specified
by three input parameters: density N of collision partners and tem-
perature T , which together determine the collision terms, and N (in
fact, N /�νD), which sets the scale for all optical depths.

4.1 Example – the O I cooling lines

Together with C II 158 µm, the 3P lines of O I at 63 and 145 µm dom-
inate the gas cooling of warm PDRs. Ratios and peak intensities of
these lines are used to measure the gas density and temperature
(Tielens & Hollenbach 1985). In Section 3.2.1 we found that simple
escape probability calculations do reproduce the proper C II 158-µm
emission. We now examine the behaviour of O I lines through an ex-
act CEP calculation of the three levels of the 3P system. We solve for
slabs with constant physical conditions, specified by temperature,
hydrogen density and oxygen column density N (O).

Fig. 9 shows the effect of varying the number of zones on the
cooling line emission at T = 100 K; the results are similar for

Figure 9. Variation of the emission in the 3P cooling lines of O I with
the number of zones in CEP calculations. Shown are the ratios to the exact
solutions for slabs with T = 100 K, various H densities, as marked, and
three representative oxygen column densities. At N (O) � 1017 cm−2, the
single-zone calculation produces the exact result for both lines. The critical
density for each line is listed in the top figure.

T = 300 and 500 K.6 Single-zone CEP calculations produce the
exact result at N (O) � 1017 cm−2, but deviate from it at larger
column densities by amounts that increase withN (O). The deviation
is different for each line, reflecting their different critical densities,
which are listed in the figure, and optical depths; for reference, at
N (O) = 1019 cm−2, τ (63 µm) ∼ 100 while τ (145 µm) varies from

6 It is interesting to note that the 145-µm transition undergoes population
inversion in the optically thin regime at low densities for temperatures above
300 K. The reason is that the radiative lifetime of its upper level is more than
five times longer than for its lower level.
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788 M. Elitzur and A. Asensio Ramos

Figure 10. The ratio r =  (145 µm)/ (63 µm) of the O I cooling lines as a function of oxygen column density for various temperatures and H densities, as
marked. The top panel in each case shows the exact ratio r, the bottom panel the ratio of the results of single-zone calculations to the exact ones.

∼0.6 to ∼2, depending on the density. Because of the different
trends displayed by the emission in the two cooling lines, the one-
zone calculation generally misses the exact result for their ratio r =
 (145 µm)/ (63 µm). Fig. 10 shows the variation of r with column
density and the deviations of the results of a one-zone calculation
from the exact values. The single-zone results differ from the exact
values by amounts that vary with temperature, density and oxygen
column density. The deviations are generally largest at hydrogen
densities around 103–104 cm−3. As is evident from this figure, the
variation range of r is comparable to the error that can be introduced
by its calculation with a single zone. A reliance on such calculations
can lead to erroneous conclusions regarding the physical conditions
in a source. Indeed, from the observed ratio of the two [O I] lines and
escape probability calculations, Caux et al. (1999) deduced a mean
gas temperature of 26 ± 0.5 K, an H2 density �3 × 104 cm−3 and

an [O I] column density �5 × 1019 cm−2. However, as is evident
from Fig. 10, the large values which they observed (r ∼ 0.4) can
be reached at lower columns for a wide range of somewhat higher
temperatures.

One-zone CEP calculations of the O I cooling lines are not as re-
liable as they are for the C II 158-µm emission. However, it does not
take too many zones for the CEP method to achieve adequate accu-
racy. As is evident from Fig. 9, 20 zones suffice for accomplishing
better than 10 per cent accuracy, and the exact solution is reached
to within 1 per cent with 40 zones in all cases.

5 D I S C U S S I O N

The test cases presented here show that our new method not only
provides an exact solution of the line transfer problem, but it also
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Exact line transfer 789

outperforms the leading ALI solver by a margin even larger than
that among different implementations of the ALI technique. Two
fundamental properties give the CEP method intrinsic advantages.
The first is the calculation of J̄ , the only radiative quantity required
for solving the level populations. In the standard approach, I ν(µ)
is determined from a solution of equation (1) and J̄ is calculated
from equation (3) in angular and frequency integrations that involve
a priori unknown dependences on these two variables. Determining
the dependence of I ν(µ) on ν and µ is a major task for the solu-
tion of the radiative transfer equation. Deviations of the computed
I ν(µ) from its exact angular shape and frequency profile contribute
to the error in the computed J̄ in each iteration. In contrast, the
CEP method determines J̄ from the integration in equation (7) that
involves known dependences on both ν and µ; the dependence on
these variables enters only from the optical depth τ ν(µ), and it is
a priori known from the input to the problem. The angular and fre-
quency integrations are exact in the CEP method; the fact that the
dependence of I ν(µ) on ν and µ is unknown is altogether irrelevant.

The other intrinsic strength of the CEP method is that it involves
only level populations and thus takes full advantage of thermal-
ization wherever that sets in. In contrast, the ALI technique must
repeatedly solve the radiative transfer equation in the entire source,
even in thermalized regions, to determine the radiation field every-
where.

5.1 Technicalities

The great efficiency of the Newton method in solving non-linear
equations is another advantage of the CEP method. The prerequisite
for a successful solution is a reasonable initial guess. An efficient
strategy for working implementations of CEP is to start from the
actual populations of a previous solution for similar physical con-
ditions. A particularly useful approach is to start from the optically
thin limit in which p = 1 everywhere and solve the level populations
from the corresponding linear equations. The column density N is
now increased in small steps until the desired value is reached, using
in each step the populations from the previous one as the initial dis-
tribution. This technique can also work in the opposite direction –
start from thermal equilibrium populations and a very large N , and
decrease N in small steps. An added advantage of this approach is
that each step also provides information about the number of zones
required for CEP convergence.

The Newton method requires inversion of the Jacobian matrix,
and the number of operations in this process increases as the third
power of the matrix dimension. Although this rapid rise did not have
a serious effect in the examples presented here, it could degrade the
performance in cases of very large numbers of levels and zones.
Matrix inversion is avoided in the iterative scheme designed by van
der Vorst (1992) for solution of the linear system of the Newton
method. In this scheme, geared toward sparse Jacobian matrices,
only the non-zero matrix elements are stored and used. We have
experimented with this method and found it to be quite useful for the
CEP technique. It is particularly suitable for multi-level problems
because they tend to produce sparse matrices, as each level generally
couples to only a limited number of other levels. Other alternatives
are to use quasi-Newton schemes (e.g. Broyden’s method) like those
employed by Koesterke, Hamann & Kosmol (1992), or evolve the
set of differential equations (34) until reaching steady state.

The efficiency of CEP computations can be further enhanced with
better grid design. Our solutions of the semi-infinite atmosphere em-
ployed grids with equal logarithmic spacing in τ over 10 orders of
magnitude, resulting in extremely thick zones deep inside the atmo-

sphere. For example, even with z = 600, the zone thickness was τ =
1.7 × 105 in the 106 � τ � 107 region. These extremely thick zones
do not pose any difficulties to CEP computations because they occur
in regions where the populations are thermalized. Indeed, the zones
could be even thicker in a much larger fraction of the source with-
out compromising accuracy. It should thus be possible to achieve
the same accuracy with fewer zones by concentrating them in the
regions where the populations deviate from thermal equilibrium.
Since the number of zones is the single most important factor in
determining CEP runtime, a more sophisticated grid construction
will make the method even more efficient. We intend to investigate
the implementation of adaptive gridding algorithms in future work.

An additional increase in efficiency can be easily gained in prac-
tical applications that do not require the extreme precision we im-
posed in this comparative study. Here the functions α and β were
calculated using the integral definition in equation (22), repeatedly
performing highly accurate quadrature. Instead, one could employ
the approximate series expansion derived by Capriotti (1965) for
the function β. We have verified that this rapidly convergent series
is always within 3 per cent of the exact result.7 Another option is to
calculate once a finely spaced table of the α- and β-functions and
interpolate between its elements with an efficient algorithm.

5.2 CEP and ALI

The CEP method is suitable for solution also with the ALI ap-
proach. Starting from equation (3) in the operator form J̄ = �S,
the ALI technique is based on the operator splitting � = �∗ +
(� − �∗), where �∗ is an approximation to the � operator.
The mean intensity is obtained from the approximate expression
J̄ = �∗S + (�−�∗)Sprev which involves the source function from
the current and previous iterations. This approximation becomes
exact upon convergence, when S = Sprev. As already noted, it has
been shown that the optimal choice for �∗ is the diagonal of �.

Equation (6) gives J̄ = (1 − p)S, the �-operator form of the
CEP method. From equation (17), the matrix elements of the CEP
�-operator are simply

�i j = (1 − β i )δi j − Mi j

τ i,i−1
(1 − δi j ), (38)

where δ i j is the Kronecker delta. Thanks to the known dependence
on ν and µ in the CEP approach, this expression allows the usage
of approximate operators �∗ of increasing complexity without any
additional computational effort in the calculation of the matrix ele-
ments. In standard ALI techniques �∗ is the diagonal of �, i.e. �∗

i j =
(1 − β i )δ i j . We have implemented this choice in an ALI solution
of equation (23) and performed the two-level model calculations
presented in this paper also with this technique. In all cases, the
solution converged to exactly the same results as the algebraic CEP
equations (27). Runtime for this ALI implementation of the CEP
method was on a par with the SCP method up to 200 zones, but fell
behind at larger z.8 Given that in the CEP ALI implementation we
have adopted the standard choice for �∗, the optimal choice in the
CEP approach could well be different, improving the performance.

It is also important to point out that the CEP method could, in
principle, be implemented in the framework of the Gauss–Seidel

7 In Capriotti (1965), the small- and large-τ portions of the expansion were
joined at line-centre optical depth τ 0 = 5. They should be joined instead at
τ 0 = 3.41 for a smooth transition.
8 We implemented the Ng (1974) acceleration technique to improve the
convergence rate of the ALI method in both SCP and CEP.
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790 M. Elitzur and A. Asensio Ramos

and successive over-relaxation iterative methods. These methods
were first applied in radiative transfer problems by Trujillo Bueno
& Fabiani Bendicho (1995) using SCP as the formal solver. They
can lead to an order of magnitude improvement in the number of
iterations used to reach convergence, with a time per iteration that is
virtually the same as the method based on the Jacobi iteration. Also
of interest is the possibility of implementing the CEP method in the
linear (Steiner 1991) or the non-linear (Fabiani Bendicho, Auer &
Trujillo Bueno 1997) multi-grid methods. All of these issues will
be addressed in future investigations.

5.3 Extensions

All the examples presented in this paper involved constant physi-
cal conditions. Variable conditions are handled by simply starting
with zones that have constant physical conditions and proceeding
to refine those divisions as required by the CEP solution accuracy.
Equation (34) for the level populations already incorporates the
handling of variable conditions by allowing the temperature and
collision rates to vary between the zones.

For simplicity, our method was introduced in the context of a
quiescent slab with the Doppler line profile. None of these sim-
plifications represents an inherent limitation of the CEP method.
The formal expressions do not specify the shape of �(x), and other
line profiles can be implemented in just the same way. Extension
from the slab to other geometries, although straightforward, requires
some more work. Thanks to the planar symmetry, the angular vari-
ation of optical depth in a slab is simply τ (µ) = τ (µ = 1)/µ, in-
dependently of either position or density profile. This symmetry
does not carry to any other geometry; even in the case of spherical
symmetry, the angular variation of τ cannot be calculated at any
point other than the centre without specifying the density profile.
However, generalizing the basic CEP relation equation (7) to han-
dle any geometry is straightforward, and the fundamental advantage
of integration over known frequency and angular variations remains
intact. Finally, recalling that large velocity gradients was the context
in which the escape probability approximation was originally intro-
duced by Sobolev, the CEP method is well suited for exact handling
of this case too.

The escape probability approach has been used in a number of
simplified calculations of complex problems. These include: over-
lapping of spectral lines (so-called ‘line fluorescence’), important
for various ionic transitions (e.g. Bowen lines) in photoionized re-
gions and OH lines in molecular clouds (Guilloteau, Lucas & Omont
1981; Elitzur & Netzer 1985; Lockett & Elitzur 1989); the effect of
line overlap with underlying continuum (Netzer, Elitzur & Ferland
1985); and photoionization (Elitzur 1984). Importing these appli-
cations into the CEP framework is straightforward. Finally, another
extension is the application of the CEP method to the self-consistent
solution of the radiative transfer equations for polarized radiation
and of the statistical equilibrium equations for the density matrix,
the so-called non-local thermodynamic equilibrium problem of the
second kind (see e.g. Landi Degl’Innocenti 2003; Trujillo Bueno
2003). We plan to provide these extensions in future publications.

5.4 Conclusions

While our new method outperforms the current leading techniques,
its greatest advantage is its simplicity and ease of implementation.
The CEP method employs a set of algebraic equations (equation 34)
that are already incorporated in numerous widely used codes based
on the escape probability approximation. All that is required for an

exact solution with these existing codes is to augment the escape
probability with the zone-coupling sum on the right-hand side of
equation (35). With this simple modification, the multi-level line
transfer problem is solved exactly.
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A P P E N D I X A : E X T E R NA L R A D I AT I O N

The only effect of external radiation on the rate equations is to
modify the exchange rate Ri

ul between levels u and l in the ith zone
(see equation 12) according to

Ri
ul ⇒ Ri

ul − Bul J̄ i
e

(
ni

u − ni
l

)
, (A1)

where J̄ i
e is the zone average (as in equation 13) of the contribution

of the external radiation to the local J̄ . When the external radiation
corresponds to the emission from dust which permeates the source,
J̄ i

e is simply the angle-averaged intensity of the local dust emission
in the ith zone. When the external radiation originates from outside

the slab and has an isotropic distribution with intensity I e(= J e) in
contact with the τ = 0 face, then

J̄ i
e = 1

2
Je

1

τ
i,i−1
ul

(
α

i,0
ul − α

i−1,0
ul

)
. (A2)

When the slab is illuminated by parallel rays with intensity I e(=
4πJ e) entering at direction (µ0, φ0) to the τ = 0 face then

J̄ i
e = Je

µ0

τ
i,i−1
ul

[
γ
(
τ i

ul/µ0) − γ (τ i−1
ul /µ0

)]
, (A3)

where

γ (τ ) =
∫ ∞

−∞

[
1 − e−τ�(x)

]
dx . (A4)

This paper has been typeset from a TEX/LATEX file prepared by the author.
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