Chapter 5

Radiative Transfer and
Line Formation

5.1 Column Density

Consider an arbitrary structure of gas with a number density n(z,y, z). The
quasar line of sight (LOS) will probe a finite distance through the cloud for
alength L. At each infinitesimal location along the LOS, [ — [+dl, the gas
density sampled, n(l), will depend upon the zyz coordinate of I = I(z,y, 2);
exactly how depends upon the parameterization of the structure geometry.
The point is that the density may not be constant throughout the cloud.
The column density, N, is define as the integrated number density along
the LOS, and is expressed

L
N:/O n(l)dl. (5.1)

In practice, one has no knowledge of n(z,y,z), the path length, L,
nor of any idea of how to formulate a geometry of the gaseous structure.
However, N is extractable directly from the absorption line data using the
basic physics of bound-bound atomic transitions. From N, metallicities
and ionization conditions of the gas can be inferred assuming that the
ionization corrections can be made accurately. In the following sections, we
will develop the formalism by which N is obtained from the absorption line
data.
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110 CHAPTER 5. RADIATIVE TRANSFER AND LINE FORMATION

to observer

Figure 5.1: — A schematic of the geometry of the line of sight (LOS) intersection of a
absorbing cloud. The LOS passes through the cloud in some arbitrary coordinate system,
which if known, could be used to obtain the path length through the cloud and n(l) from
n(z,y, z), the density profile of the cloud. In practice, no information is available and
only the integral, Eq. 5.1, giving the column density, N, can be measured from the data.

5.2 Optical Depth

Consider a plane parallel slab of thickness I with depth coordinate z =
0 — L, where the light incident on the slab at = 0 is I}. The incremental
extinction of light intensity dI over an infinitesimal depth z — x + dx will
be proportional to the intensity I at x

dI)\ = —Ii)\pI)\dCE, (52)

where k) is the mass absorption coefficient [cm? g=!], and p(z) is the mass
density [g cm™3] of material in the slab. The two types of extinction de-
scribed here are (1) bound—free absorption due to ionization, where an
electron is kicked into the gas and is thermalized, and (2) scattering, where
a photon direction is deviated and therefore removed from the solid angle
of observation. We can rewrite Eq. 5.2 as

dI)\ = —I)\dT)\, (53)

where
dry = kxpdz. (5.4)
The total optical depth through the cloud

L
T,\:/ kapdz  [unitless], (5.5)
0
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5.2. OPTICAL DEPTH 111

is the integrated extinction (i.e., optical depth) of Iy emerging from the
slab. Analogous to k) is the line absorption coefficient £y, which describes
the absorption of photons by bound-bound atomic transitions. It is defined
in the same manner as in Eq. 5.2,

dI)\ = —K)\pI)\d.’L', (5.6)
dT,\ = —e,\pdm, (57)

but in this case it describes the absorption of photons by the internal exci-
tation of atoms; the energy is not thermalized by introducing free electrons
into the gas, as in ionization. However, when an electron dexcites, the
process could mimic scattering (electron falls directly back to its original
state sending a photon of identical energy out of the observed solid angle).
It can also result in a redistribution of the photon energy field (electron
cascades to less excited states before reaching its original state, sending a
few to several photons of lesser energies into the gas).

1/1,=1.000
Incoming
Beam
_ 1=0.5 1/1;=0.606
—_—
—_—
—_—
—_—
1=1.0 11,=0.367
1=2.0 11,=0.135
1=4.0 1/1,=0.018
0 —— L
Figure 5.2: — A schematic of absorption through a cloud with path length, L, for

7 = 0.5, 1.0, 2.0, and 4.0. The incoming beam (from the left) is attenuated following
Eq. 5.8. Since 7 is the integral over L of kyp, or £)p for line opacity, the examples are
for different opacities, cloud densities, or both.

The solution to Eqgs. 5.2 and 5.6 is of the form
I\(z > L) = I] exp[—Ta], (5.8)

where I is the intensity of the light incident on the slab face at = = 0,
I, is the intensity emerging from the cloud at L, and 7, is the integrated
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112 CHAPTER 5. RADIATIVE TRANSFER AND LINE FORMATION

optical depth either for extinction, via k) or bound—bound line absorption
via £y. In Fig. 5.2. Eq. 5.8 is illustrated for various optical depths.

Equation 5.8 is the workhorse expression for analysis of quasar absorp-
tion line data. In the following sections, we will “derive” the detailed
expression for 7, = £yp for bound—bound atomic transitions. From this
expression, one can extract the column density and the details about the
thermal and/or turbulent conditions of the gas.

5.3 Natural Broadening

We wish to motivate the functional form for the line absorption coeffi-
cient, £, which describes the natural line broadening mechanism due to
the physics of bound-bound transitions.

Consider a photon incident upon an atom with a bound electron. For
the following, we will present a classical treatment. A photon is an oscil-
lating electric field. Let the direction of the field oscillation be y(t) and the
propagation direction of the photon be z. As the photon is incident upon
the atom, the electron experiences an oscillation (in the y direction). In
the classical world, the electron experiences an energy loss as it accelerates,
and therefore radiates energy away, under the influence of the oscillating
electric field. Thus, the electron experiences a force from its own radiation
that damps the acceleration. This motivates the use of a damping term
when describing the electron oscillatory motion. However, in a quantum
mechanical treatment, the electron radiates only when it actually under-
goes a bound-bound transition. Later, we will see that the damping term
is related to the uncertainty in the energy levels.

The electron obeys the harmonic oscillator equation

2

(cing + I‘% +wly = mieEo exp(iwt), (5.9)
where e is the electron charge, m, is the electron mass, I' is the damping
constant, w = 2me/ is the incident photon (oscillation) frequency, and E,
is the amplitude of the electric field energy. The term w, is defined by the
energy separation of the bound-bound transition via E, — E; = hc/A, =
2mhw,, where E, and E; are the upper, u, and lower, [, energy levels, and
h is Planck’s constant. The solution to Eq. 5.9 is

e E(t)
=) " 5.10

y(t) (me) w? —w? +ilw (5:10)
with E(t) = E, exp(iwt). This described the classical amplitude of dipole

oscillation in a photon field. The solution is in resonance when w = w,, i.e.
the photon frequency matches the energy level difference.

Copyright by Chris Churchill. Email: cwc@nmsu.edu. — November 8, 2006



5.3. NATURAL BROADENING 113

Now, to obtain the degree of absorption, we must consider how a damped
dipole oscillation attenuates the electric field. As the photon propagates in
the z direction, the attenuation follows

1/2
E(z,t) = E, exp liw {t - % (5) H , (5.11)

where the attenuation term is (e/€,)'/? = ¢/v, where € is the permittivity

due to the electron oscillation, €, is the permittivity of free space, and v is
the photon velocity. If the column density of dipole oscillators is N (i.e.,
the column density of atoms), then the attenuation is

€ E(z,t)+4nNey(t)

o= 00 =1+4nNe [El’(ii)t)] , (5.12)

where y(t) is the given by Eq. 5.10, and E(z,t) is given by Eq. 5.11. Substi-
tuting for y(t)/ E(x,t), and solving for the attenuation via Taylor expansion,

gives
1/2 2
€ 2w Ne 1
— ~1 . 5.13
<60> + me w?—w?+ilw (5.13)

Rewriting Eq. 5.13 in terms of the real and complex parts, (e/€,)'/? =
R+ iK, we have,

21 Ne? w? — w?
R=1 0 .14
+ me (w2 —w?)? 4+ Iw? (5:14)
and )
2N I
K =2 d (5.15)

me (w2 —w?)? 4+ w2’

To obtain the attenuated intensity, I, (z), as function of z through the
medium, we compute the complex conjugate of Eq. 5.11, which gives

E(z,8)E* (2,t) = I(z) = I% exp [— (”%‘*’) a:] , (5.16)

where K (Eq. 5.15) is the complex part of the attenuation term (e/e,)"/2.

Eq. 5.16 has the form of Eq. 5.8,
I,\ = Ig exp [—T)\] s (517)
with w = 2m¢/A. From the definition, dr\ = £)pdz, direct integration gives

T = lrpz, (5.18)
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114 CHAPTER 5. RADIATIVE TRANSFER AND LINE FORMATION

so that we can write
I(z) = I exp[—£apz] , (5.19)

which is the attenuation as a function of z through the medium (cloud).
Direct comparison of Egs. 5.16 and 5.19 gives £yp = 2Kw/c. We have

2Kw

E)\p = c (520)
4w Ne? Tw?
= = (5.21)
mee (W2 —w?)? +T2w?
2
- oyFe_ T (5.22)

mec (Aw)? + (T/2)2’

where we have used the approximation w? — w? = 2wAw, where Aw =
Wy — w, since the function peaks only when w ~ w,. This absorption profile
is called a “natural”’, “damping”, or more formally, a Lorentzian profile.

5.3.1 The Line Absorption Coefficient

We define the natural absorption coefficient per atom, ay,q¢, from
rp = Napat(N), (5.23)

here we remind that NV is the column density of absorbing atoms. Employ-
ing Aw = —(2mc/A2)A), and substituting into Eq. 5.22, we can then write
Qe in terms of A as

e? 22 A2 /4mc

onat(N) = 20 (AN + (TA2/4rc)2’ (5:24)

The normalization of () follows from

* p
——dz = 7. 5.25
[t (>25)
Direct integration of the absorption coefficient (Eq. 5.24) over the profile
yields
o0 0 me? \2
/ Onat(N) dX = / Onat (AN) dAN = — =2 (5.26)
0 . MeC C

which is the energy per second per atom per square radian absorbed by
a bound-bound transition. This quantifies the rate at which energy is
removed from the light beam due to a bound—bound transition with central
wavelength A.

Copyright by Chris Churchill. Email: cwc@nmsu.edu. — November 8, 2006



5.3. NATURAL BROADENING 115

5.3.2 The Damping Constant

In the quantum mechanical treatment of emission, the probability that a
photon is emitted in time dt into solid angle df? is

Ay dtdQ  [spontaneous emission] (5.27)

By I\dtdQ)  [stimulated emission]. (5.28)

We have introduced the Einstein coefficients for spontaneous and stim-
ulated emission, A4,; and B,;, where the subscripts u and [ denote the
upper and lower energy levels. The Einstein A coefficient has units [Hz
radians—2]. For stimulated emission, an incident photon stimulates the
downward transition; note that the probability is proportional to Iy, where
A = he/(E, — E;) is the wavelength corresponding to the energy difference
between the upper and lower energy levels of the bound—bound transition.
Thus, the B coefficient has units [erg~! Hz radians—2]. The probability that
an incident photon is absorbed in a bound-bound transition can similarly
be written

By, I)dtdQ  [bound-bound absorption]. (5.29)

Note that the u and I subscripts of B are interchanged.

Consider an equilibrium state of radiative transitions (number of | — u
is equal to number of u — [). For a transition from an upper to a given
lower energy level, the number of spontaneous emissions per unit second
per unit volume is

dny,
dt
where n,, is the number density of excited atoms with electrons in the upper
level. The rate of stimulated emission per second per unit volume is

= _47rnuAul; (530)

dnu/dt = —47TnuBulI)\, (531)

where I is taken at the A of the transition to the lower level. The rate for
absorption is similarly written

dnl/dt = —47T’rLlBluI)\. (532)

In equilibrium,
Ny Al + Ny Bulx = niBulj. (5.33)

It follows from the Planck radiation law that

By = 2B, (5.34)

u
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116 CHAPTER 5. RADIATIVE TRANSFER AND LINE FORMATION

and g
1
Ay = 2hX3 By = 21X}, By, (5.35)
Gu
where g; and g, are the statistical weights of the lower and upper states,
respectively, and clearly, Ay = Ajy.
Consider spontaneous emission, which is easiest to visualize. From
Eq. 5.30, the total downward rate of a bound-bound transition per sec-
ond per volume from an upper level u is,

dny,

— =D Ay Au = —dmny Y Au, (5.36)
I<u I<u

where the sums is over all levels lower than the upper level. The solution

takes the form

Ny (t) = ny exp (—t/Aty,), (5.37)

where At, is the characteristic time that the electrons spend in the upper
level before transitioning downward to some lower level [. Defining I';, =
1/At,, we have

Ty =41 Au, (5.38)

I<u

which has units of inverse time [Hz]. Therefore, the damping constant I,
represents the inverse of the probable time interval that electrons remain in
the upper level. Finally, in equilibrium, the absorption damping constant
is given by

I =8ch > N, 2B, (5.39)
<u Gu

which follows from Eq. 5.35.

In a classical world, the upper, u, and lower, [, energy levels, E,, and Ej,
are well defined. However, in reality, there is uncertainty in these energy
levels governed by Heisenberg’s Uncertainty Principle,

AE,At, = h/2r and AEAt; = h/2m, (5.40)

where AFE, and AE; are the uncertainties in the upper and lower energy
levels, and At, and At; are the characteristic times that the electron spends
in the upper and lower energy levels, respectively. The damping constant
and the uncertainty in the energy level are related through

h
AE, = oL = QhKZuAu,, (5.41)
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Figure 5.3: — A schematic energy level diagram of a bound-bound transition illus-

trating the relative spreads in the energies of the upper and lower levels. A transition is
shown with the vertical arrow between the two levels. Note that it does not have E, — E;
precisely, but a slightly offset energy based upon the relative probabilities in both the
upper and lower levels.

h g
AE = — =4h*) X LB, .42

= 5T, > uy B (5.42)
<u
Since the bound-bound transitions involves time spent by the electron in

both the upper and lower energy levels, we have
r=r,+1;. (5.43)

As illustrated in Fig 5.3, it is the probability distribution of this spread of
photon energies due to uncertainty in the energy levels, that results in the
shape of the Lorentzian absorption coefficient (Eq. 5.24).

5.3.3 The Oscillator Strength

Actual lab measurements of the energy rate removed by bound-bound tran-
sitions often yield smaller values than those obtained by the mathematical
integration of a,,; in Eq. 5.26. Recall that the derivation of the absorption
coefficient, an.t, as written in Eq. 5.24, is based upon a classical model of
electron interactions with electric fields.

From the quantum mechanical perspective, the integral of Eq.5.26 equates
the energy removed from the beam to the probability of a bound-bound
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transition (A?/c)By, times the energy hc/, such that

oo 2
/ Ot (VAN = %%Bw, (5.44)

— 00

where By, is defined in Eq. 5.28. The convention is to introduce into Eq.5.26
a proportionality constant called the oscillator strength, or f value,

e8] 2 )\2 h )\2
/ anaNdAN= =2 =2 p, (5.45)
—o0 MeC C c

where f < 1 (though there are rare instances when f > 1). Solving for f,

~Biu, (5.46)

5.3.4 Atomic Constants

The transition wavelength, the oscillator strength, and damping constant
constitute the atomic constants for each transition. In Table 5.1. the
atomic constants are listed for selected transitions that are commonly seen
in absorption in quasar spectra.

Table 5.1: Atomic Constants for Selected Transitions

Ion/Tran A f r

[4] [10% 571 ]
Lya 1215.670 0.41640 6.265
Lyg 1025.722 0.07912 1.897

Ovi A1032 1031.927 0.13290 4.163
Ovi A1038 1037.616 0.06609 4.095
Nv A1239 1238.821 0.15700 3.411
Nv A1243 1242.804 0.07823 3.378
Sitv A1394  1393.755 0.52800 9.200
Sitv A1403  1402.770 0.26200 9.030
Civ A1548  1548.195 0.19080 2.654
Crv A1551  1550.770 0.09522 2.641
Mgit A2796  2796.352 0.6123  2.612
Mgir A2803 2803.531 0.3054  2.592
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Though oscillator strengths, f, and damping constants, I', can be ex-
pressed in terms of fundamental quantities, they are measured in the lab-
oratory for each transition and carry an uncertainty of ~ 10%.

From Eq. 5.45, note that the amount of energy removed from the photon
beam (in this case the quasar light) scales with A\? f and has no dependence
upon I'. Thus, the relative magnitude of energy removed from the beam for
the well-known doublets listed in Table 5.1 is proportional to the ratio of
their A2 f values. (Note, however that the wavelength difference for doublets
is small).

For most doublets, the f values differ by a factor of two between the two
transitions. In most all case the bluer transition in a doublet has a larger
f value than that of the redder transition, i.e. f, = 2f,.. However, there
are rare cases where this is not the case, such as with the Sitr A\1190, 1193
doublet, for which f,. = 2f;.

5.4 Thermal Broadening

In reality, absorption lines are always broader than the natural widths
described in the above absorption coefficients. In intervening quasar ab-
sorption lines, the additional broadening is thermal and/or thermal plus
turbulent. Below, we will discuss the thermal broadening function, how
it contributes to the observed line profiles and also how the natural and
thermal broadening are combined into what is called the Voigt profile.

In an isothermal gas, each atom has an observable radial component
of velocity, v,,q. Bound-bound transitions in atoms moving toward the
observer with velocity, v,q4, Will absorb photons with wavelengths shorter
than the rest—frame transition wavelength, \., by the amount

A=A, (1 - UTCad) [toward observer], (5.47)

whereas transitions in atoms moving away from the observer will absorb
photons with longer wavelengths by the amount

A=A (1 + UTTM) [toward observer]. (5.48)

These relationships follow from the Doppler shift

AN Urad
— = — 4
Ar c’ (549)

where A\ = A— A\, and for v,.4¢ < ¢. In terms of the most probable velocity,
U,, for an atom in a gas with temperature 7', we obtain the characteristic
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Doppler shift,

AAD:&\TZ’\—T(
C

1/2
; M) , (5.50)

m

where v, is taken from Eq. 4.6. Often, AAp is referred to as the Doppler
width. These Doppler shifts modify the observed absorption line profile
by spreading the absorption over a wider range of wavelengths. At each
radial velocity the absorbing atoms form a natural absorption profile with
an amplitude modulated by the number of atoms at that velocity. From
Eq. 4.8, the probability that an atom will have velocity v,qq is

f(Vraq) = ! exp l— (Um‘i) ] dvrad, (5.51)

VT, Vo

Substituting the expression for A\p into Eq. 5.51, we obtain the distribu-

tion of A\ removed from the beam to be
AX 2
- — .52
(2) ]a om

/ T HANd = 1. (5.53)

F(ANdA =

exp

1
JTAND

where

Since AAp is proportional to the gas temperature, the wavelength spread of
the absorption increases with increasing temperature. Also, as temperature
increases, the relative amplitude of atoms with v,,4 = 0 decreases, resulting
in a flatter distribution of absorption with A\.

5.4.1 Redshifted Absorption

In the above discussion of the thermal distribution of atoms it was assumed
that the observer was in the rest frame of the absorbing complex. However,
the formalism applies in cases where the entire absorbing complex is in
motion, as long as there is a velocity zero point in the rest frame of the
absorbing complex.

Consider a gas “cloud” with redshift z. Then the observed wavelength
at the absorption line center will be Ayps = Ar(1+2). In this cloud, consider
atoms moving toward the observer with velocity v,,q, where v,.,q4 is relative
to the velocity zero point in the cloud. The observed wavelength will be

A = Aops (1 - ”TC‘”) =\ (1+72) (1 - ”T;d) , (5.54)
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From the Doppler shift formula

A_)\obs _ )\7- (1+Z) (1_Urad/c) _)‘T' (1+Z) — Urad
Xobs A (14 2) = 6%

which recovers velocity in the rest frame of the cloud and shows that the
Doppler shift formula is invariant with redshift.

The same invariance holds for the distribution of AX removed from the
beam due to thermal motions given by Eq. 5.52. The observed Doppler
width, AX%?, will be broadened for a redshifted cloud,

1/2
) = AAp(1 +2). (5.56)

i l2) (5T

C m

Due to the invariance of the Doppler shift formula, we also have
Adops = )\(1 + Z) - )\r(l + Z) = A)\(l + Z) (557)

Writing Eq. 5.52 in the redshifted frame,

F(AXops)dA L . (A’\"”S)Q dA (5.58)
obs obs = X - obs» .
b/ obs = mangk P | T\ angs '
and substituting the redshift explicit terms on the right hand side, gives
1 AXN1+2) \?
Adops)dAops = ————7—— | 1 dX,
F(Bovs)dhovs = s T2 expl (A)\D(1+z)> (1+2)
and we have
F(AXops)dAops = F(AN)A. (5.59)

Thus, even though the observed broadening of an absorption line is in-
creased when it arises in a redshifted cloud, the distribution of velocities
is an invariant quantity. As such, Eq. 5.52 can be universally applied to
clouds of all redshifts.

5.5 The Voigt Profile

The Voigt profile gives the distribution of absorption as a function of wave-
length when the natural absorption coefficient per atom for natural broad-
ening is modulated by the thermal distribution of atoms. The optical depth,
Ty, then, takes on the shape of the Voigt profile through the convolution

7 = Na(A\) = Nag () @ f(AN), (5.60)
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where N is the column density, au.¢(A) is the natural absorption coeffi-
cient per atom (Lorentzian) given by Eq. 5.24 and f(A) is the normalized
probability distribution of atoms (Gaussian) given in Eq. 5.52. An explicit
writing of Eq. 5.60 is

™ = /Oo Napat(AN) F(N = N)dX, (5.61)

which must be evaluated at each A to obtain the observed line shape. Ex-
panding gives

Nez)\% FA$/47FC ® 1 e_(A)\/A)‘D)z
mec?” (AXN)? + (TA2/4mc)? — /TAAD ’

X = (5.62)
where the transition wavelength, A, has been written explicitly, A\ = \ —
A, and the f value has been included into the normalization from Eq. 5.45.
Note the integral of a () is still the energy per second per atom per square
radian absorbed by the bound-bound transition, (we?/mc)(A?/c)f.

The convolution of a Lorentzian and a Gaussian is the Voigt function, u,
which has unit normalization. The absorption coeflicient with wavelength
can be written

Nﬂez}\% fu(z,y) where wu(z,y) 1 H(z,y) (5.63)
T = W = — .
A mec2 Y Y \/’/’_TAAD 'Y
and where the convolution is conveniently expressed by the Hjerting func-
tion,
y [ exp(—t)
H == ——————dt 5.64
@=L [ T (564
with Ax 2
rx 1
r = A—AD and Yy = dnc A—)\D (565)

Note that = acts as the independent variable. It simply is the difference
between the wavelength along the profile and the line center in units of
the Doppler width. Also note that y is not a function of AX and therefore
does not vary with location across the absorption profile. For the given
transition, the y is a function of only the damping constant, the wavelength
of the line center, and the Doppler width. As seen in Eq. 5.50, the latter
depends upon the gas temperature, the wavelength of the line center, and
the mass of the atom. Note that the Doppler width also appears in the
normalization of the Voigt function, u.
The observed absorption profile will then have the shape

I, =I{exp[-T], (5.66)
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No, . (x;) convolved with  f(Ax) = T(x) — exp{-t(x)}
logN=13.5
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Figure 5.4: — A schematic of the convolution process to obtain the observed line
shape in units of x = AX/AMXp for the Ly transition. The left hand panels are the
natural broadening, Nanet(z) for log N = 13.5, 15.0, and 20.0 [cm™2] from top to
bottom. Modulated by the line of sight velocity distribution of atoms (via convolution
with Eq. 5.52, which is shown in the second panel from the left), yields the optical depth
profile, 7(z) (second panel from the right). Applying Eq. 5.66 gives the absorption
profile. (right hand panels).

where I is the observed flux at wavelength X\ and I3 is the quasar contin-
uum flux (in the absence of the absorption line).

An illustration of the convolution process for obtaining Eq. 5.66 is shown
in Figure 5.4 for Ly transitions with log N = 13.5, 15.0, and 20.0 [cm 2]
(from top to bottom). In the left hand panels, the natural profile, Nay,q¢,
is shown for atoms centered at location x,. Note the extreme narrowness
of the profile, plotted over the range —0.0005 < z, < 0.0005. The width
is governed by T'A\2/4mc, and is independent of AXp. Also note that the
natural profile shape is independent of the column density, N, but that the
amplitude scales linearly with N. The convolution with Eq. 5.52 (f(Az),
second panel from left) modulates for the thermal distribution of atoms
(column density) at each z,, and yields the optical depth, 7(x). Note that,
for the small z ranges shown (near the line centers) the 7(z) profile shapes
emulate the shape of f(Az) and are independent of N. This is because
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the natural widths are extremely narrow. However, the amplitudes vary by
orders of magnitude depending upon N. For the log N = 13.5 cm~2 case,
7(z) < 1 for all z. At each z,, the atoms at z, generate an Nay,,; profile

with amplitude modulated by f(Ax).

25x10° | 150
2x10° |
1 b
1.5x10° | -
x x
e 106 [ e
5t
5x10° |
0 L L L L L ] 0 L :\: L
4 3 2 -1 0 1 2 3 4 -100  -50 0 50 100

Figure 5.5: — (left) The optical depth, 7(z), reproduced from Fig 5.4 for the log N =
20.0 cm~2 case over the range —4 < x < 4. — (right) The same 7(z) profile in an
expanded view. Note how the wings of the optical depth emulate those of the natural
broadening, Na(z), giving rise to the so—called damping wings in the observed absorption
profile (shown in the bottom right panel of Fig 5.4). Vertical dashed lines mark the x
range shown in the left panel.

The right hand panels of Figure 5.4 are the observed line profiles as
given by Eq. 5.66. Note that when the optical depth is less than unity,
the absorption line profile is not black (upper right panel), but that for
7(x) > 1, the absorption becomes black. For the log N = 20.0 cm~—2
example, the z scale is greatly expanded by a factor of ~ 30! This is to
show the so—called damping wings. For large z, the 7(z) profile emulates the
wings of Nayee profile. An expanded scale of of the 7(z) for log N = 20.0
cm~2 is shown in Fig 5.5. Note that the optical depth remains greater than
unity to z + 20 and decreased very slowly with increasing x.

Profiles such as those shown in the right hand panels of Figure 5.4 can
be fit to Eq. 5.66 to objectively obtain the column density, N, and the
only additional free parameter, the Doppler width, AAp. This approach is
useful only for high resolution data in which the line width induced by the
instrument (see § 7.1.6) is significantly less than the Doppler width. Usually
the fitting of the data is performed using the technique of x? minimization
(§ 3.6). In high resolution spectra, the absorption lines often break up into
multiple components, forming a complex and often blended profile shape.
We will address this further complexity in Chapter 8.2.
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5.6 The Doppler b Parameter

In practice, the Doppler widths are written as the Doppler b parameter,

2 T 1/2
b:%A,\D: (;) , (5.67)

where m; is the mass of the atom in which the transition arises (and not
the electron mass). Substituting into Eq. 5.65, we have

(5.68)

where v,qq/c = AX/\,. Substituting into Eq. 5.62, and rearranging yields,

(vrad) =N f Vg L o (5.69)
T\Urad) = meb” 22 +y2 /7 ’ )
where
(Vrad) = N7r€2 fu(z,y) where u(z,y)= LH(m ) (5.70)
T\Urad) = meb Y w YY) = \/Eb »Y)s .

and where H(z,y) is given by Eq. 5.64. This form of the absorption coeffi-
cient is useful for measuring the individual velocity components of complex
absorption profiles (see § 8.2.7). The conversion between X in the rest—{rame
and v,.qq is simply given by the Doppler shift formula (Eq. 5.49),

A=A
Ar

(5.71)

Urad = C

If the absorption line is observed at redshift z, then the conversion between
A in the observer frame and v,,4 in the rest frame is

A=X(142)

N+ 2) (5:72)

Urad = €

Given an observed redshifted absorption profile with multiple compo-
nents, the goal is to objectively determine the velocities (i.e., redshifts) in
addition to the column densities and Doppler b parameters of each com-
ponent. As mentioned above, this usually involves the x2? minimization
technique (§ 3.6). We will address Voigt profile fitting of the data in § 8.2.7.
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5.6.1 Turbulent Broadening

If two absorption lines arise in the same isothermal gas cloud, one from
an atom with mass m; and the other with ms, then the ratio of their b
parameters would be by /by = (mg/m1)*/2. If my > ma, then by < by. The
heavier atom has a smaller b. If there is turbulence in the gas, then the
above mass dependence between different atoms will break down.

Turbulence acts as another source of line broadening. Unfortunately, it
is not clear how to describe the broadening function. First, the turbulent
component to the broadening function would require unit normalization
and would need to be convolved with the absorption coefficient as written
in Egs. 5.62.

A simple functional form for turbulent motion is a Gaussian. Though
this is somewhat unphysical, it has the merit of preserving the Voigt func-
tion formalism of the total absorption coefficient. The convolution of two
Gaussian functions, one having having dispersion ¢, and the second having

op is a Gaussian having
2

. =

o2 + ot (5.73)

Thus, the Gaussian component appearing in Eq. 5.62 can be written such
that the Doppler widths AAp and Avp are replaced with

2kT
b2 = b?herm + thurb = 7 + b?m"b’ (574)

g

where the notation is given as Doppler b parameters.

Note that the thermal component is dependent upon the mass of the
atom, whereas the turbulent component is independent of mass. If, in a
given gas cloud, byyrp > biherm, then all absorption lines will have the same
measured b.

In the more general case, when neither the thermal nor the turbulent
component dominate, it is possible to deconvolve b;,; when transitions from
at least two different atoms have been observed. We have

2kT 2kT
b% = m—l + bt2urb and b% = m—Z + b?urb’ (575)

from which we obtain
b? — b2
b2 horm = ————2— 5.76
1,th 1— (ml/m2) ( )
where the temperature is found from T' = (my /2k)b] ;1. Solving for the
turbulent component yields,

b3 — (m1/ma)bi

= (ma fma) (5.77)

2 —
bturb -
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When transitions from more than two atoms are present, additional con-
straints can be placed on the cloud temperature and the relative contribu-
tion of the turbulent b component. Note that the method is most powerful

for large mass ratios.
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