
Chapter 2

An Introduction to

Radio Astronomy Observables

Zhi-Qiang Shen (Shanghai Astronomical Observatory)

An introduction to some basic observables in radio astronomy is presented. These include flux density,
intensity/brightness, brightness temperature, and some antenna fundamentals (power pattern, gain, an-
tenna temperature, etc.). The concept of the radiative transfer and its application in radio astronomy is
also briefly explained.

I have restricted the text to presenting the fundamentals. For those who are interested, please refer
to the textbooks listed in the end for a more in-depth reading.

2.1 Introduction

In general, radiation from a source can be described by four Stokes parameters (I, Q, U, and V) as a
function of frequency (ν), time (t), and its position (α and δ). The parameters for linear polarization (Q
and U) and circular polarization (V) carry important information on the magnetic field structure in and
around the source. But mainly because of the intrinsic weakness of detectable polarization from most of
the sources, the measurements of these three Stokes parameters are relatively limited compared to the
observations of the total intensity (I). Therefore, the lecture will focus on the randomly polarized (or,
unpolarized) radiation. Radio waves from most of the astronomical sources are known to be practically
unpolarized.

2.2 Flux Density (Flux) versus Intensity (Brightness)

Two most widely used quantities in radio astronomy are spectral flux density and specific intensity.
For brevity, the spectral flux density is often referred to as flux density or even flux, Sν . It is defined
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Figure 2.1: A schematic geometry used in the definition of intensity (brightness)

as the power (∆W ) received (or transmitted) within a certain frequency interval (∆ν) and through a
certain area (A), i.e.,

Sν =
∆W

A∆ν
. (2.1)

And thus it has SI units of W m−2 Hz−1. Because radio source is usually very weak, a more frequently
used unit in radio (and infrared) astronomy to measure flux density is jansky (abbreviated Jy) and

1 Jy = 10−26 W m−2 Hz−1 = 10−23 ergs cm−2 Hz−1. (2.2)

The specific intensity usually appears as intensity, Iν , and is interchangeable to the so-called (surface)

brightness, Bν , in optical astronomy. It can be understood as the flux density per unit solid angle (∆Ω).
A more general definition of Iν or Bν is

Iν = Bν =
∆W

cosθA∆ν∆Ω
, (2.3)

here θ, as shown in Figure 2.1, is the angle between the normal to the area (A) and the direction to the
solid angle (∆Ω). Obviously, it has SI units of W m−2 Hz−1 sr−1.
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It should be noted that flux density Sν is usually applied to point sources while (surface) brightness
Bν or intensity Iν applied to extended sources. Assuming that the surface of any extended source is
composed of many infinitesimal areas, and each area is so small that it has a constant surface brightness
at that particular position in the sky. Thus, the overall flux density of the extended source is

Sν =
∫

src

IνcosθdΩ . (2.4)

In spherical polar coordinates, we have the differential element of solid angle dΩ = sinθdθdφ. Here, φ is
the azimuthal angle and θ the polar angle.

It can be proved that the intensity Iν (or brightness Bν) is independent of the distance (r) of the
emitting object. However, the flux density Sν is proportional to 1/r2.

2.3 Black Body Radiation and Brightness Temperature

Figure 2.2: Planck function for a wide range of temperatures. Each curve is determined by a particular
(labelled) temperature for black body radiation.

The spectral distribution of a black body radiator in thermodynamic equilibrium is given by the
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well-known Planck function:

Bν =
2hν3

c2

1
ehν/kT − 1

, (2.5)

where h = 6.63 × 10−34 J s is Planck’s constant, k = 1.38 × 10−23 J K−1 is Boltzmann’s constant, and
c = 3 × 108 m s−1 is the speed of light. As shown in Figure 2.2, temperature T is the only parameter
needed to describe such a Planck spectrum of black body radiation. At a given temperature, the black
body spectrum has a maxima brightness with the corresponding frequency in GHz (109 Hz)

νmax

GHz
= 58.789[

T

K
] , (2.6)

or the corresponding wavelength

λmax

cm
= 0.28978[

T

K
]−1 . (2.7)

This is known as Wien’s displacement law, implying that a black body appears bluer as T increases.
Integrating the Planck function over the entire frequency range, we can obtain the Stefan-Boltzmann

law as follows,

I(T ) = B(T ) =
1
π

σT 4 , (2.8)

where σ is the Stefan-Boltzmann constant:

σ =
2π5k4

15c2h3
= 5.6697 × 10−8 W m−2 K−4 . (2.9)

We introduce two extreme cases of Planck function. In the case where the exponential becomes much
greater than unity, i.e.,

hν/kT >> 1 , or ehν/kT >> 1 , (2.10)

we can obtain the Wien distribution as

Bν =
2hν3

c2
e−hν/kT (2.11)

which is an appropriate approximation when the temperature is low and the frequencies are high. In the
opposite case where the value of the exponential is much less than unity, i.e.,

hν/kT << 1 , or ehν/kT − 1 << 1 , (2.12)

the Planck function reduces to the Rayleigh-Jeans distribution

Bν =
2kTν2

c2
=

2kT

λ2
. (2.13)

This works at high temperature and low frequencies. Plugging in constants h and k, we can show that
the Rayleigh-Jeans limit holds for frequencies

ν

GHz
<< 20.84[

T

K
] , or ν << 0.3545 νmax , (2.14)

where νmax is estimated from the Wien’s displacement law at a given temperature T . This is a very good
approximation in the radio frequency range. In particular, this actually defines a very useful quantity,
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Figure 2.3: Planck function versus two extreme cases: Rayleigh-Jeans approximation (red dashed lines)
and Wien approximation (blue dot-dashed lines). Note the difference in the vertical axis (left for bright-
ness at T=300 K and right at T= 5800 K).

the brightness temperature Tb, in radio astronomy to measure the distribution of the surface brightness
from any radiation mechanism,

Tb =
c2

2kν2
Bν . (2.15)

Obviously, if the source is a black body with a temperature T and the Rayleigh-Jeans law applies, the
brightness temperature Tb must correspond to the thermodynamic temperature, i.e., Tb = T . Otherwise,
Tb has little to do with the physical temperature. Unlike the thermodynamic temperature which is always
independent of frequency, the brightness temperature of the radiation other than the black body radiation
is a function of frequency. Therefore, in most cases of radio astronomy, Tb is an equivalent temperature,
not a physical temperature! It tells what the temperature of the source would have to be if it were
radiating like a black body in order to display the observed surface brightness at a given frequency. Note
that in some cases such as at millimeter and sub-millimeter wavelengths, the Rayleigh-Jeans law is no
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longer applicable. Then, the defined brightness temperature should be calculated from

Tb =
hν

k

1
ehν/kTb − 1

. (2.16)

2.4 Calculations of Brightness Temperature

We can write down a general relation between the flux density of a source and the corresponding brightness
temperature distribution Tb(θ, φ) across the sky:

Sν =
2kν2

c2

∫
Tb(θ, φ)dΩ . (2.17)

In the following, I will show how to use this expression to calculate the brightness temperature for different
source geometries.

For the uniform (constant) brightness temperature distribution, we have Tb(θ, φ)= Tb=constant and∫
src

dΩ = π
4 θ2, where θ is the source size in diameter. Thus, we obtain

Tb

1012K
= 1.76[

Sν

1Jy
][

ν

1GHz
]−2[

θ

1mas
]−2 . (2.18)

This corresponds to an optically-thick sphere distribution. More realistically, some distributions of bright-
ness temperature over the extended source should be considered. Assuming a Gaussian brightness tem-
perature distribution of

Tb(θ) = T0e−
(θ/2)2

2σ2 , (2.19)

here T0 is the peak brightness temperature and σ = θ2
FWHM
8ln2 (θFWHM is the Full Width at Half Maximum

(FWHM) of the radio source measured from high-resolution radio observations), we can derive

T0

1012K
= 1.22[

Sν

1Jy
][

ν

1GHz
]−2[

θFWHM

1mas
]−2 . (2.20)

Similarly, for the optically-thin sphere distribution (the brightness temperature Tb(θ) at each point is
proportional to the path length through the sphere of θF in its angular diameter),

Tb(θ) = T0

√
1 − (

θ

θF
)2 (0 ≤ θ ≤ θF) , (2.21)

here T0 is the brightness temperature at the center of the sphere, we then obtain

T0

1012K
= 2.64[

Sν

1Jy
][

ν

1GHz
]−2[

θF

1mas
]−2 . (2.22)

It is interesting to compare the brightness temperatures of the above-mentioned three distributions

(T0)sphere : (Tb)constant : (T0)Gaussian =
3
θ2
F

:
2
θ2

:
2ln2

θ2
FWHM

, (2.23)

here the same flux density at the same frequency is assumed.
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2.5 Antenna Fundamentals

The first radio telescope (antenna) was built in 1937 by Grote Reber. Basically, antenna is such a device
that can receive the electromagnetic wave at radio frequency. Following the previous discussion, we can
think of an antenna as a scanner of the brightness or the brightness temperature of the sky. One of
the most important parameters of an antenna is its power of resolving the celestial object, the angular
resolution, which is of the order of ∼ λ/D, here D is the diameter of the antenna. This means that
antenna is directive; every time it is only sensitive to the signals within a certain angular dimension.
More generally, this can be characterized by the normalized power pattern as a function of the direction
θ and φ, P (θ, φ), normalized so that P (0, 0) = 1 in the direction of the symmetry axis and otherwise,
P (θ, φ) ≤ 1. Therefore, let a point-like source be in a direction (θ, φ) 
= (0, 0), the received power would
be

∆W =
1
2
AeSνP (θ, φ)∆ν , (2.24)

here the factor 1/2 is introduced to account for the fact that only one polarization can be detected, and
Ae is an effective aperture of the antenna. The effective collecting area is smaller than the geometrical
area Ag, and the ratio between the two gives the definition of the aperture efficiency as

ηA =
Ae

Ag
< 1 . (2.25)

An extended radio source with a brightness distribution B(θ, φ) or Tb(θ, φ), can be treated as the
collection of many point sources. Thus, the total power received within a certain solid angle is

W =
1
2
Ae

∫
sky

B(θ, φ)P (θ, φ)dΩ∆ν , (2.26)

or,

W =
k

λ2
Ae

∫
sky

Tb(θ, φ)P (θ, φ)dΩ∆ν . (2.27)

Before proceeding, we introduce two solid angles. The beam solid angle ΩA of an antenna is a measure
of the angular extent of the antenna beam:

ΩA =
∫

sky

P (θ, φ)dΩ . (2.28)

The main beam solid angle ΩM is similar to ΩA but has the integration over the main lobe only:

ΩM =
∫

main lobe

P (θ, φ)dΩ . (2.29)

And the ratio of the power in main lobe to the total power defines the (main) beam efficiency

ηB =
ΩM

ΩA
< 1 . (2.30)

Furthermore, we define another term called the maximum directive gain Gmax or directivity D as

Gmax = D =
4π

ΩA
. (2.31)
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This is to measure the gain of a real directional antenna relative to an idealized isotopic antenna (which
has a beam solid angle of 4π), and is usually calculated in decibels (dB) as D(dB) = 10log10(4π/ΩA). In
practice, the antenna effective area Ae and thus the beam solid angle ΩA and gain Gmax are a function of
elevation angle. Most antennas are set to have maximum efficiency at an elevation angle of 45◦. Therefore
gain curve, as a plot of gain versus elevation angle, is necessary to show the performance of an antenna.

Another important term in radio astronomy is called antenna temperature TA. It is equivalent to the
power received within a certain frequency interval, but in the units of temperature (K). According to
the Nyquist theorem which identifies the power stimulated by the presence of a radio source with that
produced by heating the characteristic antenna resistance to a temperature TA, we have

TA =
W

k∆ν
. (2.32)

It should be mentioned here that in reality, the stimulated power includes everything (radio source, sky,
ground spill-over, etc.) received within the antenna beam, and thus TA is not solely related to the source.
Obviously, TA has nothing to do with the physical temperature of the antenna itself. We can derive TA

in terms of the sky brightness temperature Tb(θ, φ)

TA =
Ae

λ2

∫
sky

Tb(θ, φ)P (θ, φ)dΩ . (2.33)

Considering a simple case which Tb is constant and thus TA = Tb, we can get a very powerful relation
between the aperture Ae and the beam solid angle ΩA as follows:

AeΩA = λ2 . (2.34)

This holds for more general case and any antenna. This can be understood as an antenna equivalent of
the angular resolution Θ ∝ λ/D (where, ΩA ∝ Θ2 and Ae ∝ D2). This important equation closely relates
two different concepts: the concept of the power gain (Gmax or D) of a transmitting antenna through its
beam solid angle (ΩA) and that of effective area (Ae) of a receiving antenna. Now we can interpret the
antenna temperature as the weighted mean brightness temperature at a certain direction (θ, φ) with the
antenna (normalized) power pattern as the weight:

TA =
∫

Tb(θ, φ)P (θ, φ)dΩ∫
P (θ, φ)dΩ

. (2.35)

There is a reciprocity theorem, stating that parameters for a receiving antenna are the same as ones
for a transmitting antenna. This can be proved based on the fact that the solutions of Maxwell’s equations
are valid when time is reversed.

2.6 Radiative Transfer

So far we have discussed about the radiation in free space, and viewed antenna as a region between a
guided wave (electrical signal) and an electromagnetic wave from the radio emitter. However, when there
is medium along the ray path, such as the neutral and ionized media lying between a radio source and
the surface of the Earth, the energy received by an antenna will no longer be identical to the energy
originally emitted by a radio source (as indicated in Figure 2.4). This can be understood in terms of the
radiative transfer equation

dIν

ds
=

dI+
ν

ds
+

dI−ν
ds

= jν − κνIν , (2.36)
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Figure 2.4: A schematic diagram used to illustrate the concept of radiative transfer

here the gain term,

dI+
ν = jνds , (2.37)

is described by the (volume) emissivity jν (radiation produced per unit volume and per unit solid angle
within a certain frequency band) and the loss term here,

dI−ν = −κνIνds , (2.38)

is assumed to be caused by the absorption only (no scattering) with the absorption coefficient κν . We
can further define an important term, the optical depth τν , by integrating dτν = κνds over the ray path
of radiation transfer

τν(s) =
∫ s

0

κν(s′)ds′ . (2.39)

Immediately, there are two simple solutions to the radiative transfer equation. One is for the emission
only (i.e. κν = 0). The equation of radiative transfer will be dIν

ds = jν and, thus the solution is

Iν(s) = Iν(0) +
∫ s

0

jν(s′)ds′ , (2.40)

here Iν(0) is the intensity at the origin, corresponding to s = 0 along the ray path. The other is for the
absorption only (i.e. jν = 0). The radiative transfer equation will become dIν

ds = −κνIν , and we get

Iν(s) = Iν(0)e−τν(s) . (2.41)

In the case of thermodynamic equilibrium, i.e., Iν=constant along any ray path or mathematically
dIν

ds = 0, both the emissivity jν and the absorption coefficient κν are related through the intensity Iν

which is the Planck function Bν(T ),

jν

κν
= Iν = Bν(T ) . (2.42)

This is also know as Kirchoff’s Law, and the ratio ( jν

κν
) is also known as the source function. Beware

that in general case, Iν is different from Bν(T ). However, we can use the so-called Local Thermodynamic
Equilibrium (LTE) approximation which satisfies the Kirchoff’s Law, and the radiative transfer equation
can be re-written as

− 1
κν

dIν

ds
= −dIν

dτν
= Iν − Bν(T ) . (2.43)
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Finally, with the assumption that temperature T is the constant along the ray path (independent of the
optical depth τν), we can derive a more general and very insightful solution as

Iν(s) = Iν(0)e−τν(s) + Bν(T )(1 − e−τν(s)) . (2.44)

In radio astronomy, this is more often expressed in terms of the various temperatures,

Tb(s) = Tb(0)e−τν(s) + T (1− e−τν(s)) , (2.45)

where Tb and T correspond to the brightness temperature of a radio source and the thermodynamic
temperature of the medium, respectively. The first term in the right hand side of above two equations
represents the power (brightness temperature) of incoming radiation (from a radio source) attenuated by
a factor e−τν(s), and the second term is the net contribution to the received power (temperature) from
the intervening medium itself as a black body. Two interesting cases are: for τν(s) >> 1 (optically thick),
then Tb(s) = T ; for τν(s) << 1 (optically thin), then Tb(s) = Tb(0) + Tτν(s).

2.7 An Example - Opacity Correction

High frequency radio emission from a distant radio source ofter suffers the atmospheric absorption on its
way to the ground antenna. As a result, any signal above the atmosphere could be heavily attenuated
by the atmosphere that is characterized by temperature (Tatm) and optical depth (τatm). In terms of the
system temperature Tsys (which is an input-equivalent temperature of the noise added into the receiving
system), we have

Tsys = Trx + Tatm(1 − e−τatm) . (2.46)

This means that the measured system temperature consists of the temperature of receiver Trx and a
contribution from the atmosphere. Note that in many case, Tsys is much larger than the previously
mentioned antenna temperature TA. With the assumption that the atmosphere is composed of a set of
parallel planes, we can approximate the optical depth (which is proportional to the path length in the
atmosphere) as

τatm = τ0secZ , (2.47)

here τ0 is the zenith opacity, i.e., the atmospheric optical depth at the zenith (Z=0, Z is the local zenith
angle). And if the exponential term (τatm = τ0secZ) is small enough (which is roughly satisfied in most
radio observations), we can have the following linear expression of Tsys as a function of secZ,

Tsys = Trx + Tatmτ0secZ . (2.48)

Therefore, we can obtain the product of τ0 and Tatm and the receiver temperature (Trx) from a straight
line fit to the real data. Then, if we know the atmosphere temperature Tatm, we will be able to estimate
the zenith opacity τ0.

Figure 2.5 shows plots of the system temperature (Tsys) versus secZ at four antenna sites (LA, MK,
OV, and PT) during an 86 GHz VLBA experiment on November 3, 2002. By performing a linear fit to
these plots, we can obtain the receiver temperature and atmospheric opacity as follows:

Trx = 116K, τ0 = 0.097 (LA) ,
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Figure 2.5: Plots of the system temperature (Tsys) versus secZ at four antenna sites (LA, MK, OV, and
PT) during an 86 GHz VLBA experiment on November 3, 2002 (Shen et al. 2005). These are used to
determine the receiver temperature of each antenna and the optical depth of the atmosphere at each site.

Trx = 112K, τ0 = 0.041 (MK) ,

Trx = 73K, τ0 = 0.041 (OV) ,

Trx = 69K, τ0 = 0.081 (PT) ,

here an atmospheric temperature Tatm = 250K is assumed.
For a better amplitude calibration, we usually need to refer the system temperature measured on the

ground to a point above the atmosphere by multiplying Tsys by eτ0secZ. This is referred to as the opacity

correction, and the resultant modified system temperature T ∗
sys is

T ∗
sys = Trxeτ0secZ + Tatm(eτ0secZ − 1) . (2.49)

L. Huang is thanked for preparing Figures 2.1, 2.2, 2.3, and 2.4.
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