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Goals 

� ���a consistent picture of radiative energy 
transport as part of hydrodynamics of complex 
media using examples of typical astrophysical 
environment

� �����numerical methods and approximations 
describing hydrodynamics and radiative
transfer, understand the advantages and 
limitations of different techniques

� 	
����initial experience in programming and 
using state-of-the-art computers including 
parallel machines



Summary of the Course

� Structure: The course will consists of 2 parts: 
lectures and two (only!) exercises.

� Grading: In order to complete the course students 
would have to attend most of the lectures, do the 
home work, and successfully complete the basic 
level exercises in RT and HD. This will result in 5 
points. Additional 2 points will be awarded to the 
students who would complete the advanced level 
exercise.



Schedule

� We hope to finish all the lectures before 
mid January 2005

� 2 lectures a week: Mondays and Thursdays 
10am-noon.

� Logical sequence
– Recall of RT and Numerical Methods
– Numerical Models of Stellar Atmospheres → 

microphysics → NLTE calculations
– Hydrodynamical equations → detailed 

description in 1D → generalization to 3D
– Combining of HD and RT in one model



Total Recall (Lecture 1)
Radiative transfer: main concepts and 

definitions

dEν=IνdAdωdtdν �
� intensity

dEλ=IλdAdωdtdλ �

Iλ dλ=Iνdν, units Iν [erg/(s⋅cm2⋅rad2⋅Hz)]



Mean intensity: J Iν νπ
ω= �
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Flux: F Iν ν θ ω= � cos d

Absorption
coefficient:

d I k I xν ν νρ= − d
units of kν [cm2/g]

Emission coefficient: d I j xν νρ= d
units of jν [erg/(s rad2 Hz g)]

Optical depth: d dτ ρν ν= k x , τν is unitless!

Source function: ratio of jν to kν

Useful quantities



� Absorption and emission contain the “true” part 
(energy is transferred between the kinetic energy 
of the gas and the radiation field) and the 
scattering part (energy of absorbed photon which 
is returned to the radiation field).

� Radiation dominated gas: pure scattering.
� Collision dominated gas: pure absorption.
� In general case:

� For isotropic scattering and LTE: 
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� One can distinguish 3 types of absorption 
processes:

� b-b- radiative transitions
- collisional transitions

� b-f - ionization and
recombination

� f-f -absorption/emission

� Radiative b-b transitions: absorption, 
spontaneous and  stimulated emission.

� Collisional b-b transitions: excitation and 
de-excitation



Equation of radiative transfer: 
d d dI k I x j xν ν ν νρ ρ= − +  

or 
d
d

I
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ν
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One can obtain formal solution: 
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Unfortunately, Sν depends on Iν ! 



Critical dependences
� Geometrical, angular, and frequency dependence 

of opacity kν and source function Sν
� Dependence of the source function Sν on the 

radiation field
� Number of absorbers (how many absorbers there 

is on a given energy level) depend on local 
physical conditions and radiation field

� Velocity distribution of the absorbers affects the 
frequency dependence of kν and Sν
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Approximations
� Geometry: static, plane-parallel or spherical 

medium
� Angular: isotropic radiation field
� Absorbers: Boltzmann level population, 

Saha ionization balance, Maxwellian
velocity distribution

� Line shapes: identical absorption/emission 
profiles, Voigt profile

� Local Thermodynamical Equilibrium (LTE, 
how good is it?)



Examples

� Photospheres of solar-like stars 
(convection)

� Giant stars (spherical, anisotropic radiation 
field, giant convection cells)

� Stellar winds (complex geometry, velocity 
field, anisotropic radiation field, NLTE, 
dynamic)

� Gas clouds (LTE?, external radiation field, 
different Trad and Tgas, presence of dust)



Solar convection and
emerging spectra

Courtesy of Martin Asplund

http://www.mso.anu.edu.au/~martin/research.html


Examples

� Photospheres of solar-like stars 
(convection)

� Giant stars (spherical, anisotropic radiation 
field, giant convection cells)

� Stellar winds (complex geometry, velocity 
field, anisotropic radiation field, NLTE, 
dynamic)

� Gas clouds (LTE?, external radiation field, 
different Trad and Tgas, presence of dust) 



Convection on Betelgeuse

Courtesy of Bernd Freytag

http://www.astro.uu.se/~bf/


Examples

� Photospheres of solar-like stars 
(convection)

� Giant stars (spherical, anisotropic radiation 
field, giant convection cells)

� Stellar winds (complex geometry, velocity 
field, anisotropic radiation field, NLTE, 
dynamic)

� Gas clouds (LTE?, external radiation field, 
different Trad and Tgas, presence of dust)



Dynamic spectra

Courtesy of Susanne Höfner

http://www.astro.uu.se/~hoefner/


Examples

� Photospheres of solar-like stars 
(convection)

� Giant stars (spherical, anisotropic radiation 
field, giant convection cells)

� Stellar winds (complex geometry, velocity 
field, anisotropic radiation field, NLTE, 
dynamic)

� Gas clouds (LTE?, external radiation field, 
different Trad and Tgas, presence of dust)



Protostars

A – water ice

B – methanol ice

C & E – amorphous 
silicates

D – carbon-dioxide ice

Watson et al.: 2004, Astrophysical Journal Supp Series 154, 391

http://www.pas.rochester.edu/~dmw/documents/Watson_etal_2004a.pdf


Next part
� Math: first and second order ordinary 

differential equations, partial differential 
equations, boundary conditions, direct 
integration schemes, finite differences, 
convergence and stability, vector ODE. 
Gauss quadratures, solving systems of 
linear equations. Non-linear equations.

� Press et al. 1992, “Numerical Recipes: The 
Art of Scientific Computing”
������������	
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http://www.numerical-recipes.com/nronline_switcher.html


Total Recall
Math

System of Linear Equations (SLE):
a11x1 + a12x2 + … + a1NxN = b1
a21x1 + a22x2 + … + a2NxN = b2

…        …
aN1x1 + aN2x2 + … + aNNxN = bN

A⋅x = b

Two important algorithms: Gauss-Jordan 
elimination and LU decomposition



Gauss-Jordan Elimination
Simple rules: 

i. Changing places of any two rows in A
requires only a similar change in b.

ii. Replacing any row in A and b with a linear 
combination of itself and other rows does not 
change the solution.

iii. Interchanging two columns in A is equivalent 
to changing the sequence of x, therefore  the 
solution must be sorted to get the original 
sequence.



No pivoting

a11x1+a12x2+          … = b1
a21x1+a22x2+          … = b2
a31x1+a32x2+          … = b3

a11x1+a12x2+           … =b1
0+   (a22-a12a21/a11)x2+… =b2-b1a21/a11
0+   (a32-a12a31/a11)x2+… =b3-b1a31/a11

a´11x1+a
´
12x2+         … = b

´
1

a´22x2+         … = b
´
2

a´32x2+         … = b
´
3



Partial pivoting

a11x1+a12x2+          … = b1
a21x1+a22x2+          … = b2
a31x1+a32x2+          … = b3
k: |ak: |ak1k1|=max(|a|=max(|aj1j1|) for j=i,i+1,… N|) for j=i,i+1,… N

ak1x1+ak2x2+           … =bk
0+   (a22-ak2a21/ak1)x2+… =b2-bka21/ak1
0+   (a32-ak2a31/ak1)x2+… =b3-bka31/ak1

a´11x1+a
´
12x2+         … = b

´
1

a´22x2+         … = b
´
2

a´32x2+         … = b
´
3



Full pivoting

a11x1+a12x2+          … = b1
a21x1+a22x2+          … = b2
a31x1+a32x2+          … = b3
k,l: |k,l: |aaklkl|=|=max(|amax(|anmnm|) for n,m=i,i+1,… N|) for n,m=i,i+1,… N

aklxl+ak2x2+           … =bk
0+   (a22-ak2a21/akl)x2+… =b2-bka21/akl
0+   (a32-ak2a31/akl)x2+… =b3-bka31/akl

a´11xl+a
´
12x2+         … = b

´
1

a´22x2+         … = b
´
2

a´32x2+         … = b
´
3



LU decomposition

A = L⋅U where L and U are triangular 
matrices  L:               U:

A⋅x = (L⋅U )⋅x = L⋅(U⋅x) = b
L⋅y = b and U⋅x = y
Solving these systems is easy:

y1=b1/L11;  y2=(b2-y1⋅L21)/L22 etc.
See Num. Rec. Section 2.3 on how to 

compute L and U.



Special matrices

� Tri-diagonal: forward and back-substitution, (no 
difference between Gauss-Jordan and LU 
decomposition schemes)

� Band-diagonal

� Block-diagonal

Iterative improvement of the solution:
A⋅(x-x´) = A⋅x´ - b 


